回归分析
文章平均质量分 71
WMN7Q
在校学生,多多指教
展开
-
【回归分析】说明
这是一篇说明********************这是一个关于回归分析的专题。在这个专题中我会使用 mathematica和spss两种工具。文章一般都是先介绍在mma里面相应的函数,在用spss来实现一遍原创 2016-09-19 21:34:41 · 712 阅读 · 0 评论 -
【回归分析】[9]--加权最小二乘法
【回归分析】[9]--加权最小二乘法 这一节会讲一下关于加权最小二乘法,这种方法是用来处理 ”异方差“ 的。如下图 关于处理的方法:例子:我们来看一个直观的例子1.构造一组数据x = Table[i, {i, 1, 1000}];y = Table[2*i + RandomInteger[PoissonDistrib原创 2016-11-20 20:23:42 · 13901 阅读 · 0 评论 -
[回归分析][14]--Logistic回归
[回归分析][14]--Logistic回归 这应该是回归分析的最后一块知识点了。最后还会有一篇总结。那今天就好好讲一讲Logistic回归。 Logistic回归是为了处理 y的值是0,1时,这时候若用普通最小二乘去回归,会产生0--1之间的数,故产生了Logistic回归,去计算概率。 有两种情形: (1).可以分块计算概率的 如上图,我原创 2016-12-25 14:09:58 · 1161 阅读 · 0 评论 -
[回归分析][13]--岭回归
[回归分析][13]--岭回归 这一次讲一下用mathematica来做岭回归。 岭回归的作用也是为了消除变量间的相关性的。 说一下步骤: 1.先对数据进行长度单位化(即均值为0,长度为1) 2.构造新的变量,如: 3.对新的变量做普通最小二乘,画出岭迹图,确定k(0 4.系数转化 例子:下面为这次例子的数据{原创 2016-12-18 15:28:12 · 1490 阅读 · 0 评论 -
[回归分析][12]--主成分分析
[回归分析][12]--主成分分析这一篇文章会讲一下关于主成分的内容,这里就是处理数据间有相关性的。我会用一个例子来说明:data = {{49.`, 15.9`, 149.3`, 4.2`, 108.1`}, {50.`, 16.4`, 161.2`, 4.1`, 114.8`}, {51.`, 19.`, 171.5`, 3.1`, 123.2`}, {52.原创 2016-12-09 21:33:21 · 3065 阅读 · 0 评论 -
[回归分析][10]--相关误差的问题
[回归分析][10]--相关误差的问题 这一篇文章还是来分析相关误差的问题。 1.游程数 定义:游程数--残差穿过x-轴的次数 用这个可以检查如残差有一块在x轴上面,一块在x轴下面的情形。 如上面这样的残差下面构造两个统计量: 其中 n1=残差为正的个数 n2=残差为负的个数,可以用上面的公式计算出当n1,n2为给定数时的均值与原创 2016-11-28 12:31:06 · 2020 阅读 · 0 评论 -
[回归分析][11]--共线性数据的分析
[回归分析][11]--共线性数据的分析考虑 x1,x2,x3 ... xn之间有相关性时。即我们搜集数据时,可能搜集的数据之间有很强的相关性,会影响我们的分析。对于两两之间的关系,可以用相关系数矩阵如:以下是数据data = {{"st", "at", "pt", "et", "at-1", "pt-1"}, {20.11, 1.99, 1., 0.3, 2.0原创 2016-12-03 14:23:47 · 2488 阅读 · 0 评论 -
[回归分析][9.5]--标准化系数
[线性回归][9.5]--标准化系数 作用:当拟合时数据单位不一样时,得到的回归系数大小没有可比性(不能比较谁比较重要),这时就要计算标准话系数。 这里就讲一下标准化系数的求法。 lm = LinearModelFit[data[[All, {2, 3, 1}]], {x1, x2}, {x1, x2}];StandardCoeffient[data_List原创 2016-11-22 21:56:50 · 7644 阅读 · 0 评论 -
[回归分析][8]--变量的变换
[回归分析][8]--变量的变换 这一节会讲关于变量的变换,如最常用的(做对数变换),和我们在什么情况下要做变换。 当然,要能做变换,我们必须要熟悉函数的形状,下面给出常见函数的图像。 (其实,当我们能由函数图像猜出函数式子的时候,可以使用非线性回归) 我们这里使用变换来做,看一个例子 这是一组年份与石油产量的数据data原创 2016-11-14 13:17:45 · 3003 阅读 · 0 评论 -
【回归分析】[6]--残差分析
【回归分析】[6]--残差分析 在这一节,我们讨论一下关于残差的问题。主要是为了验证四个假设。 这一次,我们就要之前的一个例子来做解释。Mathematica数据处理(1)--安斯库母四重奏 datafrash = {{{10., 8.04}, {8., 6.95}, {13., 7.58}, {9., 8.81}, {原创 2016-10-30 17:34:56 · 31294 阅读 · 0 评论 -
【回归分析】[3]--回归方程的显著性检验
【回归分析】[3]--回归方程的显著性检验这篇文章准备使用一个例子来说明。例子的数据:data2 = {{391.95, 488.51}, {516.98, 798.30}, {355.63, 235.08}, {238.55, 299.45}, {537.78, 559.09}, {733.78, 1133.25}, {198.83, 348.74原创 2016-10-05 20:56:18 · 40080 阅读 · 2 评论 -
【回归分析】[4]--多元线性回归mma操作
【回归分析】[4]--多元线性回归mma操作今天讲一下使用mma来进行多元线性回归的一些常用操作,一共有四个方面1.方差分析2.参数置信区间 a.更改置信度 b.更改精确位数3.计算R^2 和 调整的R^24.预测值和预测的置信区间 a.对于某个特定数的区间预测data = {{63, 64, 51}, {71, 70, 68}原创 2016-10-16 16:43:40 · 1849 阅读 · 0 评论 -
[回归分析][7]--定性预测变量
[回归分析][7]--定性预测变量 这一篇文章将讲一类特殊的变量。(0--1变量) 如可以表示 性别(男/女),季节(4个季节需要三个变量) 我们来看一个具体用法的例子。*——————————下面是例子————————* 有三个年限1960,1970,1975 现在考虑人均教育支出在每个年份是否有显著差异。 是不是感觉很熟原创 2016-11-04 21:42:27 · 2323 阅读 · 0 评论 -
【回归分析】[5]--多元线性回归对参数的F检验
【回归分析】[5]--多元线性回归对参数的F检验 目标:为了检验 (a).多个系数同时为0 (b).系数相等 (c).系数存在线性关系 思想: 利用条件得到简化模型,用简化模型与原模型比较,若两原创 2016-10-23 14:06:10 · 12084 阅读 · 0 评论 -
【回归分析】[2]--线性回归和最小二乘法
【回归分析】[2]--线性回归和最小二乘法这篇讲一下线性回归和其求参数的一种方法,最小二乘法最小二乘法: 原理:(原理部分就拍照了)知道了原理就可以实践了,我是直接用了现成的函数先使用SPSS{{1, 23}, {2, 29}, {3, 49}, {4, 64}, {4, 74}, {5, 87}, {6, 96}, {6, 97},原创 2016-09-25 15:01:42 · 1774 阅读 · 0 评论 -
【回归分析】[1]--协方差与相关系数
【回归分析】[1]--协方差与相关系数回归分析的第一讲,关于协方差与相关系数。(有些文字推到部分用图片的形式给出)---打公式好麻烦关于最后一点:当相关系数为0时,x与y可能存在别的关系,这里举一个例子y == 50 - x^2去这些点,计算相关系数(使用SPSS)可以看到 Beta = 0,及相关原创 2016-09-20 12:44:00 · 9329 阅读 · 2 评论 -
[回归分析][15]--总结
[回归分析][15]--总结 马上也要到2017了,回归这个系列就不拖到明年了,今天把这篇总结的写完,也就差不多了。 这个总结我是想把这一系列里常用的函数归纳一下,一些是自带的,一些是我自己写的,放在一起,也方便以后查找吧。lm = LinearModelFit[datan, x, x](*画散点图和拟合图*)Show[ListPlot[datan, Image原创 2016-12-28 20:24:29 · 1067 阅读 · 5 评论