[时间序列分析][1]--平稳性,白噪声的检验
可以看到相关系数迅速衰减到0,说明该序列是平稳的。
三.
判断数据是否是白噪声
如果一个序列是平稳的,那么下面我们就要判断数据是否是白噪声,白噪声没有研究的意义。
在mathematica中,判断白噪声使用 AutocorrelationTest[],这个函数
这个函数必须要说明一下,首先他的 原理是bartlett定理
下面对于 AutocorrelationTest[]这个函数的使用进行说明,如下图:
就是她返回的是一个p值,p值越大表示原假设成立的可能性越大,即数据是随机的可能性越大。
即p值越大,随机的可能性越大
我们可以看到p值还是挺大的,所以认为该数据是白噪声。
我们还有一些其他的检验方法,如下图
也可以使用下图的方式
以上就把白噪声的检验做完了。
到这里就把时间序列的第一节,平稳性和白噪声检验讲完了。
大家有什么问题可以发邮件给我,我的邮箱是 wangmaonan@bupt.edu.cn
以上,所有
2017/3/20
这是一个全新的专题,讲关于时间序列分析的。还是老规矩,我使用mathematica来实现。
我个人认为时间序列分析是一门挺重要的科目,如果做建模什么的一定是知道的,或者处理数据的时候,很多数据都是和时间有关的,所以时间序列还是很值得学习的。
这次我申请了一个专栏,我会把文章放在专栏里。截一张图,做一个纪念。
最近还在考虑是否要做一个微信公众号,因为用手机看csdn的博客效果不是很好。
当然,这些都是之后要考虑的。这一篇文章我们就先来讲一下时间序列的知识。
做时间序列分析,之前需要做两个准备工作,即检查序列是否是平稳的,如果是平稳的,还要检查是否是白噪声。我们一个一个来讲。
我们用一个例子来说明:数据集是49 - 98 北京最高气温,数据如下:
一.
画出散点图
首先我们画出散点图,先从总体上看一下数据
二.
平稳性的检验
方法:平稳性检验一般可以从时序图上看或者通过相关性的图中看出。
我们这里讲一下相关图的方法。
原理:平稳序列通常具有短期相关性。该性质用自相关系数来描述就是随着延迟期数的增加,平稳序列的自相关系数会很快的衰减到0
特别,关于延迟的相关系数的计算公式如下
在mathematica里使用的函数是 CorrelationFunction[],具体代码如下
我个人认为时间序列分析是一门挺重要的科目,如果做建模什么的一定是知道的,或者处理数据的时候,很多数据都是和时间有关的,所以时间序列还是很值得学习的。
这次我申请了一个专栏,我会把文章放在专栏里。截一张图,做一个纪念。
最近还在考虑是否要做一个微信公众号,因为用手机看csdn的博客效果不是很好。
当然,这些都是之后要考虑的。这一篇文章我们就先来讲一下时间序列的知识。
做时间序列分析,之前需要做两个准备工作,即检查序列是否是平稳的,如果是平稳的,还要检查是否是白噪声。我们一个一个来讲。
我们用一个例子来说明:数据集是49 - 98 北京最高气温,数据如下:
{{1949., 38.8}, {1950., 35.6}, {1951., 38.3}, {1952., 39.6}, {1953.,
37.}, {1954., 33.4}, {1955., 39.6}, {1956., 34.6}, {1957.,
36.2}, {1958., 37.6}, {1959., 36.8}, {1960., 38.1}, {1961.,
40.6}, {1962., 37.1}, {1963., 39.}, {1964., 37.5}, {1965.,
38.5}, {1966., 37.5}, {1967., 35.8}, {1968., 40.1}, {1969.,
35.9}, {1970., 35.3}, {1971., 35.2}, {1972., 39.5}, {1973.,
37.5}, {1974., 35.8}, {1975., 38.4}, {1976., 35.}, {1977.,
34.1}, {1978., 37.5}, {1979., 35.9}, {1980., 35.1}, {1981.,
38.1}, {1982., 37.3}, {1983., 37.2}, {1984., 36.1}, {1985.,
35.1}, {1986., 38.5}, {1987., 36.1}, {1988., 38.1}, {1989.,
35.8}, {1990., 37.5}, {1991., 35.7}, {1992., 37.5}, {1993.,
35.8}, {1994., 37.2}, {1995., 35.}, {1996., 36.}, {1997.,
38.2}, {1998., 37.2}}
一.
画出散点图
首先我们画出散点图,先从总体上看一下数据
ListLinePlot[data, PlotStyle -> Dashed, PlotMarkers -> {"o", 8}]
二.
平稳性的检验
方法:平稳性检验一般可以从时序图上看或者通过相关性的图中看出。
我们这里讲一下相关图的方法。
原理:平稳序列通常具有短期相关性。该性质用自相关系数来描述就是随着延迟期数的增加,平稳序列的自相关系数会很快的衰减到0
特别,关于延迟的相关系数的计算公式如下
在mathematica里使用的函数是 CorrelationFunction[],具体代码如下
ListPlot[
CorrelationFunction[Table[x[i], {i, 1, 100}], {20}],
PlotMarkers -> {Automatic, Medium}, Filling -> Axis,
FillingStyle -> Directive[Thickness[.01], Green, Dashed],
PlotRange -> All
]
可以看到相关系数迅速衰减到0,说明该序列是平稳的。
三.
判断数据是否是白噪声
如果一个序列是平稳的,那么下面我们就要判断数据是否是白噪声,白噪声没有研究的意义。
在mathematica中,判断白噪声使用 AutocorrelationTest[],这个函数
这个函数必须要说明一下,首先他的 原理是bartlett定理
下面对于 AutocorrelationTest[]这个函数的使用进行说明,如下图:
就是她返回的是一个p值,p值越大表示原假设成立的可能性越大,即数据是随机的可能性越大。
即p值越大,随机的可能性越大
ListPlot[Table[AutocorrelationTest[data[[All, 2]], i], {i, 1, 10}], Filling -> Axis]
我们可以画出关于滞后数的图
我们可以看到p值还是挺大的,所以认为该数据是白噪声。
我们还有一些其他的检验方法,如下图
AutocorrelationTest[data, Automatic, "HypothesisTestData"]["TestDataTable", All]
也可以使用下图的方式
以上就把白噪声的检验做完了。
到这里就把时间序列的第一节,平稳性和白噪声检验讲完了。
大家有什么问题可以发邮件给我,我的邮箱是 wangmaonan@bupt.edu.cn
以上,所有
2017/3/20