企业文化与“酱油党”

企业文化与“酱油党”

吴旻

泰岩网络工作室

 

         “酱油党”是指这样的人,他们对周边的事物没什么感觉;其经典的台词就是:我什么都不知道,我只是出来打瓶酱油。

         企业文化,通俗地讲就是老大们的性格。老大们想如何掌控自己的团队,表现出来的就是企业文化。

 

         改革之前的国有企业是“酱油党”人最集中的地方。只要不犯“错误”,干多干少一个样,贡献大小一个样。“大锅饭”是那个时代企业文化的特点,不得罪人是大多数企业员工的道德潜规则。对于老大们来说,只要活下去,就能升上去;只要不出事,就能评上奖。

         为什么会有这么多“酱油党”?利益驱动。

         什么样的企业文化会产生这种利益?互相矛盾的内在企业文化!写在墙上的文化是老大们制定的,其实印在员工心里的文化也是老大们制定的。无论是明的还是暗的,只要是冲突的,都会导致员工无所适从,从而成为“酱油党”。

 

         一、团队合作与派系之争。派系这个事情自古有之,从前叫“朋党”,叫“党争”,连主席都说,“有党无派,千奇百怪”。但问题是派系之间未必不能形成合力,老大们处理得好了,一样可以做出事情来。如果处理不好,那就是内讧了。在派系斗争激烈之时,团队合作几乎是不可能的。“酱油党”能有个生存空间,已属不易;要知道,站错队则更是危险。

二、敬业与收入。在实际收入过低的企业,号召员工敬业,有奉献精神,事实上几乎没什么效果,反而显得虚伪。反过来,如果实际收入较高,你想不让员工不敬业都难。道理很简单,换个公司,他未必能有这么好的收入;为了保住这份工作,他就得努力。企业文化中过于明显的虚伪成分,会让人觉得努力的人才是傻子。“酱油党”就努力装成这样的傻子。

三、加班与考勤。就像提倡创新,就要给员工试错的空间,提倡加班就不要再有严格的考勤。加班不给工资,偶有灵活的工作时间却被扣工资,于情理上是无论如何也说不过去的。既然加班没好处,考勤还如此不尽人情,那还加班干什么?

 

其实互相矛盾的不光是企业文化,在教育子女的问题上,我们所说所做一样的不能自圆其说。比如:

一、希望宝宝尽快自立,却从不让他自己做事。衣服得长辈给穿,脸得长辈给洗,饭得长辈给喂,不能跑,不能自己玩。当我问为什么宝宝不能自己做时,回答是宝宝太小了,而不是宝宝能不能学会。

二、希望孩子好好学习,自己却很少学习,还瞧不起老师。老师是名义地位很高,实际地位很低的一个职业,瞧不起也就瞧不起吧。但整天让孩子学习,自己却不动书本的人,按正常的逻辑,就显示非常虚伪了。

我见过很多小孩进入青春期后什么也不愿意做,谁的话也不愿意听。我把这种情况总结为,当长辈们好不容易把这些孩子培养成少爷、小姐之后,却又嫌他们一无是处。

### CNN-LSTM 时间序列预测模型概述 CNN-LSTM 是一种结合卷积神经网络 (CNN) 和长短时记忆网络 (LSTM) 的混合架构,能够有效地处理时间序列数据。该模型利用 CNN 提取局部特征的能力以及 LSTM 对长期依赖关系的学习能力,在许多应用领域表现出优越性能。 #### 模型构建方法 在构建 CNN-LSTM 模型时,通常有两种主要方式来组合这两种网络结构: 1. **将 CNN 提取的特征序列作为 LSTM 输入**:先通过一维卷积层提取时间序列的空间特征,再将其传递给 LSTM 层学习时序模式。 2. **嵌入式 ConvLSTM 结构**:直接在 LSTM 单元内部集成卷积操作,从而同时捕获空间和时间维度的信息[^2]。 以下是基于第一种方法的一个典型实现流程: #### Python 代码示例 下面是一个简单的 CNN-LSTM 模型用于时间序列预测的例子,使用 Keras 库完成: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense, Flatten def build_cnn_lstm_model(input_shape): model = Sequential() # 添加一维卷积层以提取局部特征 model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=input_shape)) model.add(MaxPooling1D(pool_size=2)) # 使用最大池化降采样 # 将三维张量展平成二维矩阵以便输入到 LSTM 中 model.add(Flatten()) model.add(Dense(50, activation='relu')) # 可选全连接层进一步加工特征 # 调整形状为适合 LSTM 输入的形式 model.add(Dense(input_shape[0], activation='relu')) model.add(LSTM(50, activation='relu')) # LSTM 层负责捕捉时序信息 # 输出层定义回归目标 model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # 编译模型并指定优化器与损失函数 return model # 假设我们有长度为 n_steps 的时间步数和单变量序列 n_steps, n_features = 50, 1 model = build_cnn_lstm_model((n_steps, n_features)) model.summary() # 打印模型结构概览 ``` 上述代码片段展示了一个基础版本的 CNN-LSTM 架构,其中 `input_shape` 参数应根据实际数据集调整。此模型适用于单一变量的时间序列预测任务;对于多变量情况,则需相应修改输入尺寸[^1]。 #### 数据预处理注意事项 为了使 CNN-LSTM 模型达到最佳效果,合理的数据准备至关重要。这包括但不限于标准化/归一化数值范围、划分训练验证集合以及重塑数组至适当格式供网络读取。例如,如果原始数据是一维向量形式 `[samples, features]` ,则可能需要转换为目标形状 `(samples, timesteps, features)` 来匹配预期输入规格[^3]。 #### 性能评估指标 针对时间序列预测问题,常用的评价标准包含平均绝对误差(MAE),均方误差(MSE)及其百分比变体MAPE等。这些度量可以帮助量化预测精度并与基线或其他算法比较表现优劣程度。 ---
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值