整型在内存中的储存
计算机都是二进制来存储数据的。
计算机用原码,反码,补码来表示有符号数。数据有符号位和数据为,符号位有‘0’和‘1’,1表示负数,0表示正数。
原码:直接将二进制按照正负数的形式翻译成二进制就可以。
反码:将原码的符号位不变,其他位依次按位取反就可以得到了。
补码:反码+1就得到补码。
在这个简单的程序中我们可以看见a的内存地址为04 00 00 00,跟我们写出来00 00 00 04不一样,这是因为大小端问题。
什么是大小端:
大端(存储)模式:是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式:是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
为什么有大小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22
为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
判断自己的电脑是大端还是小端存储:
代码1
int check_sys()
{
int i = 1;
return (*(char*)&i);//用char*来接收I的地址,然后return i
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
代码二:
int check_sys()
{
union
{
int i ;
char c;
}un;
un.i = 1;
return un.c;
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
整型截断和整型提升
首先我们可以通过两个代码来看这个问题:
代码1
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
结果:
这个运行结果为4294967168不是-128.
我们知道char类型的常量占一个字节(8个bite位)
常数128是一个整型,占四个字节(32个bite位)
i只能保存一个字节(八个bite位)的二进制位。
-128的二进制位位:
这是i的地址位为10000000
u%打印需要整型提升。
00000000 00000000 00000000 10000000
01111111 11111111 11111111 10000000
所以结果为4294967168
代码2
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n",a);
return 0;
}
运行结果:
128的二进制地址位
有符号数以补码存储,所以char类型i的二进制地址为10000000,
而打印以%u打印这就要整型提升
因此:这是i的地址位011111111 11111111 11111111 10000000这是无符号打印所以为4294967168,如果是%d打印结果就是-128
浮点型在内存中的存储
浮点数家族包括: float、double、long double 类型。
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
结果:
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大? 要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面V的格式,可以得出s=0,
M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。