截止到本期,一共发了6篇关于机器学习预测全家桶Python代码的文章。参考往期文章如下:
2.机器学习预测全家桶-Python,一次性搞定多/单特征输入,多/单步预测!最强模板!
3.机器学习预测全家桶-Python,新增CEEMDAN结合代码,大大提升预测精度!
4.机器学习预测全家桶-Python,新增VMD结合代码,大大提升预测精度!
5.Python机器学习预测+回归全家桶,再添数十种回归模型!这次千万别再错过了!
6.Python机器学习预测+回归全家桶,新增TCN,BiTCN,TCN-GRU,BiTCN-BiGRU等组合模型预测
Python机器学习预测全家桶包含了哪些?
话不多说,直接看目录!
第一级文件夹:
第二级文件夹:
包含的数量之多,直呼过瘾!
本期新增模型:
采用最新的mealpy库实现对CNN-BiLSTM-Attention的优化。
本期新增模型功能简介:
-
本期所用的mealpy库是3.0.0版本的,包含215智能优化算法(190个官方(原始、混合、变体),25个已开发),方便修改多种智能优化算法,一键替换,简单易改!具体可参考官方链接:https://pypi.org/project/mealpy/3.0.0/
-
本期代码实现了对优化前后预测结果对比图自动保存
-
实现了自动打印优化前后指标
-
采用作者自行编写数据整理函数代码,可以一键更改单/多特征输入,单/多步预测。
结果展示:
①多变量输入单步预测结果:
选择前5天多个特征的数据作为输入,预测未来一天的负荷值。
优化前网络模型预测结果:
优化后网络模型预测结果对比图:
优化前后指标打印结果:
②多变量输入多步预测结果:
选择前5天多个特征的数据作为输入,预测未来2天的负荷值。
优化前网络模型预测结果,因为是预测未来两天,一次有两步预测结果。
第一步优化前预测结果:
第二步优化前预测结果:
优化后网络模型预测结果对比图,同样有两步:
第一步优化前后预测结果对比:
第二步优化前后预测结果对比:
优化前后指标打印结果:
剩下的单变量输入就不再一一展示了,代码方便一键修改,不会修改单/多步预测的小伙伴,可参考这篇文章:.机器学习预测全家桶-Python,一次性搞定多/单特征输入,多/单步预测!最强模板!
后续会继续更新一些别的优化模型……敬请期待!
机器学习python全家桶代码获取
点击下方下卡片获取!
tensorflow~=2.15.0
pandas~=2.2.0
openpyxl~=3.1.2
matplotlib~=3.8.2
numpy~=1.26.3
keras~=2.15.0
mplcyberpunk~=0.7.1
scikit-learn~=1.4.0
scipy~=1.12.0
qbstyles~=0.1.4
prettytable~=3.9.0
vmdpy~=0.2
xgboost~=2.0.3
mealpy~=3.0.1