八篇保姆级故障诊断教程,学会这几篇你的故障诊断就算入门了!

今天水一期,总结一下以前写过的几篇保姆级故障诊断。学会这几篇,机器学习的故障诊断你就基本合格了!

本次为大家带来:

采用连续小波变换时频图作为故障特征提取的手段,并构建多种机器学习诊断方法,可以自行搭配。包含的有:

CWT-CNN,CNN-SVM,CWT-ResNet,CWT-CNNBiGRU,CWT-CNNLSTM。

内容简介

①对官方下载的西储大学数据进行处理。处理的方法参考往期文章:西储大学轴承诊断数据处理,matlab免费代码获取

②通过连续小波变换 (Continuous Wavelet Transform,CWT)将轴承 数据集转换为时频图,以提取频域和时域信息, 并为后续的故障诊断提供更详细的特征;

③为了方便模型的训练,以及考虑到计算机的内存,将时频图重新调整为64×64×3的尺寸,并保存提取到的特征数据。

④分别搭建:CNN,ResNet,CNNBiGRU,CNNLSTM,CNNSVM模型,将特征数据送入模型,将70%的数据作为训练集,30%作为测试集,对模型展开训练与测试。

CWT-CNN模型结构如下:

617816e919f9c58c810979d674a2fa5f.png

内容详解

一,对官方下载的西储大学数据进行处理,步骤如下:

  1. 一共加载10种数据,然后取每个数据的DE_time(%DE是驱动端数据 FE是风扇端数据 BA是加速度数据 选择其中一个就行)

  2. 2.设置滑动窗口w,每个数据的故障样本点个数s,每个故障类型的样本量m

  3. 将所有的数据滑窗完毕之后,综合到一个data变量中

  4. 有关西储大学数据的处理之前有文章也讲过,大家可以看这篇文章:西储大学轴承诊断数据处理,matlab免费代码获取

    最后得到的数据是一个1000*2048的矩阵,其中1000是样本量,2048是特征。1000又等于100*10,10是指10种故障状态,100是指每种状态有100个样本。在代码中是data_total_1797.mat

二,采用连续小波变换将数据进行时频图转换

连续小波变换时频图:

26a5cc64d5a3d6859326ea1481f78597.png

三,将构建好的特征向量送入不同模型进行训练与测试

将每种状态的前70组用于训练,后30组用于测试。得到的结果如下:

e3b7d38fb54e00b7fe3d3d58ed89dd3e.png

8df8c70f8ec2b5226b4a03c0c5ba5031.png

05ccc1a8d0791230f222ce86dbe30547.png

248c7edb42c8084e6465885f5b093fa9.png

ResNet结构:

eb90669019b90a8499eabff712ba1e44.jpeg

618f957a7e88270a7a42d039c119dab3.png

81937483d7e074d6be777d4923eee08e.png

添加了T-sne降维前后分布图:

f179bdda7a677eb6a980f5080f950156.png

90468649ad8294c5b165f656361e5cce.png

所有代码目录截图:

c56b74e8936af990ee7af4d4ed521217.jpeg

按照程序步骤一步步执行即可,说明.txt对程序的执行步骤进行了说明。

以上所有图片均可运行出来。

代码获取

点击下方卡片关注,获取更多代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淘个代码_

不想刀我的可以选择爱我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值