前段时间去一家公司参加面试,碰到了一个问题,讲的是树的镜像问题,当时莫名其妙,后面想想应该是跟平面镜成像原理似的,回来研究后得出如下结论。
问题描述:输入一颗二元查找树,将该树转换为它的镜像,即在转换后的二元查找树中,左子树的结点都大于右子树的结点。用递归和循环两种方法完成树的镜像转换。
例如输入:
8
/ /
6 10
// //
5 7 9 11
输出:
8
/ /
10 6
// //
11 9 7 5
定义二元查找树的结点为:
- struct BSTreeNode
- {
- int value;
- BSTreeNode *left;
- BSTreeNode *right;
- };
思路:题目要求用两种方法,递归和循环,其实质是一样的。
解法一:用递归。假设当前结点为pNode,只需交换该结点的左右子女,然后分别递归求解左子树和右子树即可。代码极为简单。
解法二:用循环,需要一个辅助栈完成,每次取栈顶元素交换左右子女,然后将左右子女分别压入辅助栈,当栈中元素为空时,结束循环。其实不论是递归也好,循环也好,都是利用栈的特性完成。
参考代码:
- //函数功能 : 输入一颗二元查找树,将该树转换为它的镜像
- //函数参数 : pRoot为根结点
- //返回值 : 根结点
- BSTreeNode * Mirror_Solution1(BSTreeNode * pRoot)
- {
- if(pRoot != NULL)
- {
- BSTreeNode * pRight = pRoot->right;
- BSTreeNode * pLeft = pRoot->left;
- pRoot->left = Mirror_Solution1(pRight); //转化右子树
- pRoot->right = Mirror_Solution1(pLeft); //转化左子树
- }
- return pRoot;
- }
- BSTreeNode * Mirror_Solution2(BSTreeNode * pRoot)
- {
- if(pRoot != NULL)
- {
- stack<BSTreeNode *> stk; //辅助栈
- stk.push(pRoot); //压入根结点
- while(stk.size())
- {
- BSTreeNode *pNode = stk.top();
- BSTreeNode *pLeft = pNode->left;
- BSTreeNode* pRight = pNode->right;
- stk.pop();
- if(pLeft != NULL)
- stk.push(pLeft);
- if(pRight != NULL)
- stk.push(pRight);
- pNode->left = pRight; //交换左右子女
- pNode->right = pLeft;
- }
- }
- return pRoot;
- }