留数及其应用

回顾:解析函数 f ( z ) f(z) f(z) l l l

  1. 复变积分: ∮ l f ( z ) d z = 0 \oint_lf(z)dz=0 lf(z)dz=0
  2. 有一阶极点 a a a ∮ l f ( z ) z − a d z = 2 π i f ( a ) \oint_l\frac{f(z)}{z-a}dz=2\pi i f(a) lzaf(z)dz=2πif(a)
  3. n n n阶极点 a a a ∮ l f ( z ) ( z − a ) n d z = 2 π i ( n − 1 ) ! f n − 1 ( a ) \oint_l\frac{f(z)}{(z-a)^n}dz=\frac{2\pi i}{(n-1)!} f^{n-1}(a) l(za)nf(z)dz=(n1)!2πifn1(a)

留数

f ( z ) f(z) f(z) 以有限点 a a a 为孤立奇点,即 f ( z ) f(z) f(z) 在点 a a a 的某去心邻域 0 < ∣ z − a ∣ < R 0<|z-a|<R 0<za<R 内解析,则称积分
1 2 π i ∮ c f ( z ) d z   ( C : ∣ z − a ∣ = ρ , 0 < ρ < R ) \frac{1}{2 \pi \mathrm{i}} \oint_{c} f(z) \mathrm{d} z\ (C:|z-a|=\rho, 0<\rho<R) 2πi1cf(z)dz (C:za=ρ,0<ρ<R)
称为 f ( z ) f(z) f(z) 在点 a a a留数(也称余数,残数等),记为 Res ⁡ z = a f ( z ) \operatorname{Res}_{z=a} f(z) Resz=af(z) Res ⁡ ( f , a ) . \operatorname{Res}(f, a) . Res(f,a).

留数定理

f ( z ) f(z) f(z) 在围线或复围线 C C C 所包围的区域 D D D 内,除点 a 1 , a 2 , ⋯   , a n a_{1}, a_{2}, \cdots, a_{n} a1,a2,,an 外解析,在闭域 D ˉ = D + C \bar{D}=D+C Dˉ=D+C 上除点 a 1 , a 2 , ⋯   , a n a_{1}, a_{2}, \cdots, a_{n} a1,a2,,an 外连续,则
∮ C f ( z ) d z = 2 π i ∑ k = 1 n Res ⁡ z = a k f ( z ) \oint_{C} f(z) \mathrm{d} z=2 \pi \mathrm{i} \sum_{k=1}^{n} \operatorname{Res}_{z=a_{k}} f(z) Cf(z)dz=2πik=1nResz=akf(z)
由复连通域上的Cauchy 积分定理知,当 0 < ρ < R 0<\rho<R 0<ρ<R,留数的值与 ρ \rho ρ 无关,则
Res ⁡ z = a f ( z ) = 1 2 π i ∮ C f ( z ) d z = c − 1 , \operatorname{Res}_{z=a}f(z)=\frac{1}{2 \pi \mathrm{i}} \oint_{C} f(z) \mathrm{d} z=c_{-1}, Resz=af(z)=2πi1Cf(z)dz=c1,
这里 c − 1 c_{-1} c1 f ( z ) f(z) f(z) 在点 a a a 的去心邻域内的Laurent 展开式中 ( z − a ) − 1 (z-a)^{-1} (za)1 这一项的系数。

下面对留数定理进行简单推导:我们先在 a a a 的某去心邻域 0 < ∣ z − a ∣ < R 0<|z-a|<R 0<za<R 内把函数 f ( z ) f(z) f(z) 展成Laurent 级数得, ∮ l f ( z ) d z = ∮ l [ ∑ n = − ∞ ∞ c n ( z − b ) n ] d z \oint_{l} f(z) d z=\oint_{l}\left[\sum_{n=-\infty}^{\infty} c_{n}\left(z-b\right)^{n}\right] d z lf(z)dz=l[n=cn(zb)n]dz,由于级数一致收敛,因此可以先积分后求和,故 ∮ l f ( z ) d z = ∑ n = − ∞ ∞ c n ∮ l ( z − b ) n d z \oint_{l} f(z) d z=\sum_{n=-\infty}^{\infty} c_{n} \oint_{l}\left(z-b\right)^{n} d z lf(z)dz=n=cnl(zb)ndz,又由我们在Cauchy 积分公式中推导得到的 ∮ C d z ( z − z 0 ) n = { 2 π i ( n = 1 ) 0 ( n ≠ 1 且 为 整 数 ) \oint_{C} \frac{d z}{(z-z_0)^{n}}=\left\{\begin{array}{ll}2 \pi \mathrm{i} & (n=1) \\ 0 & (n \neq 1且为整数)\end{array}\right. C(zz0)ndz={2πi0(n=1)(n=1) 最终得到, ∮ l f ( z ) d z = 2 π i   c − 1 \oint_{l} f(z) d z=2\pi i\ c_{-1} lf(z)dz=2πi c1,至此我们完成了对留数的推导。

留数的计算方法

计算留数时总是先展开成Laurent 级数计算过于繁琐,此处介绍几种孤立奇点的留数计算法。

(1). 若奇点是可去奇点,则留数为0;

(2). 若奇点是本性奇点,则需要采用Laurent 展开来求留数;

(3). 奇点若是 m m m阶极点,留数的计算方法如下:

z = b z=b z=b f ( z ) f(z) f(z) m m m 阶极点, 则
f ( z ) = c − m ( z − b ) − m + c − m + 1 ( z − b ) − m + 1 + ⋯ + c − 1 ( z − b ) − 1 + c 0 + c 1 ( z − b ) + ⋯   , 0 < ∣ z − b k ∣ < r . \begin{aligned} f(z)=& c_{-m}(z-b)^{-m}+c_{-m+1}(z-b)^{-m+1}+\cdots \\ &+c_{-1}(z-b)^{-1}+c_{0}+c_{1}(z-b)+\cdots, \quad 0<\left|z-b_{k}\right|<r . \end{aligned} f(z)=cm(zb)m+cm+1(zb)m+1++c1(zb)1+c0+c1(zb)+,0<zbk<r.
两端乘上 ( z − b ) m (z-b)^{m} (zb)m,有
( z − b ) m f ( z ) = c − m + c − m + 1 ( z − b ) + ⋯ + c − 1 ( z − b ) m − 1 + c 0 ( z − b ) m + c 1 ( z − b ) m + 1 + ⋯   . (z-b)^{m} f(z)=c_{-m}+c_{-m+1}(z-b)+\cdots+c_{-1}(z-b)^{m-1}+c_{0}(z-b)^{m}+c_{1}(z-b)^{m+1}+\cdots . (zb)mf(z)=cm+cm+1(zb)++c1(zb)m1+c0(zb)m+c1(zb)m+1+.
这时 c − 1 c_{-1} c1 ( z − b ) m f ( z ) (z-b)^{m} f(z) (zb)mf(z) 的展开式中 ( z − b ) m − 1 (z-b)^{m-1} (zb)m1 项的系数,故
Res ⁡ z = b f ( z ) = 1 ( m − 1 ) ! lim ⁡ z → b d m − 1 [ ( z − b ) m f ( z ) ] d z m − 1 = 1 ( m − 1 ) ! d m − 1 [ ( z − b ) m f ( z ) ]   d z m − 1 ∣ z = b \operatorname{Res}_{z=b} f(z)=\frac{1}{(m-1) !} \lim _{z \rightarrow b} \frac{d^{m-1}\left[(z-b)^{m} f(z)\right]}{d z^{m-1}}=\left.\frac{1}{(m-1) !} \frac{\mathrm{d}^{m-1}[(z-b)^{m} f(z)]}{\mathrm{~d} z^{m-1}}\right|_{z=b} Resz=bf(z)=(m1)!1zblimdzm1dm1[(zb)mf(z)]=(m1)!1 dzm1dm1[(zb)mf(z)]z=b
由此可得到以下推论:

  1. a a a f ( z ) f(z) f(z)的一阶极点,则
    Res ⁡ z = b f ( z ) = lim ⁡ z → b ( z − b ) f ( z ) \operatorname{Res}_{z=b} f(z)= \lim _{z \rightarrow b}(z-b) f(z) Resz=bf(z)=zblim(zb)f(z)

  2. f ( z ) = φ ( z ) ψ ( z ) , φ ( z ) , ψ ( z ) f(z)=\frac{\varphi(z)}{\psi(z)}, \varphi(z), \psi(z) f(z)=ψ(z)φ(z),φ(z),ψ(z) a a a 点解析且 ψ ( a ) = 0 \psi(a)=0 ψ(a)=0, ψ ′ ( a ) ≠ 0 \psi^{\prime}(a) \neq 0 ψ(a)=0,则
    Res ⁡ z = a f ( z ) = φ ( a ) ψ ′ ( a ) \operatorname{Res}_{z=a} f(z)=\frac{\varphi(a)}{\psi^{\prime}(a)} Resz=af(z)=ψ(a)φ(a)

    φ ( z ) \varphi(z) φ(z)可取1,此时 f ( z ) = 1 ψ ( z ) f(z)=\frac{1}{\psi(z)} f(z)=ψ(z)1的留数 Res ⁡ z = a f ( z ) = 1 ψ ′ ( a ) \operatorname{Res}_{z=a} f(z)=\frac{1}{\psi^{\prime}(a)} Resz=af(z)=ψ(a)1.

无穷远处的留数

∞ \infty f ( z ) f(z) f(z) 的一个孤立奇点,即 f ( z ) f(z) f(z) 在某区域 0 ⩽ 0 \leqslant 0 r < ∣ z ∣ < + ∞ r<|z|<+\infty r<z<+ 内解析,我们称
1 2 π i ∮ C f ( z ) d z ( C : ∣ z ∣ = ρ , ρ  充分大  ) \frac{1}{2 \pi \mathrm{i}} \oint_{C} f(z) \mathrm{d} z \quad(C:|z|=\rho, \rho \text { 充分大 }) 2πi1Cf(z)dz(C:z=ρ,ρ 充分大 )
f ( z ) f(z) f(z) 在点 ∞ \infty 的留数, 记为 Res ⁡ z = ∞ f ( z ) \operatorname{Res}_{z=\infty} f(z) Resz=f(z) Res ⁡ ( f , ∞ ) \operatorname{Res}(f, \infty) Res(f,),这里 C − C^{-} C是指沿 C C C 的顺时针方向。

f ( z ) f(z) f(z) ∞ \infty 的去心邻域 0 ⩽ r < ∣ z ∣ < + ∞ 0 \leqslant r<|z|<+\infty 0r<z<+ 内的洛朗展开式为
f ( z ) = ⋯ + c − n z n + ⋯ + c − 1 z + c 0 + c 1 z + ⋯ + c n z n + ⋯   . f(z)=\cdots+\frac{c_{-n}}{z^{n}}+\cdots+\frac{c_{-1}}{z}+c_{0}+c_{1} z+\cdots+c_{n} z^{n}+\cdots . f(z)=+zncn++zc1+c0+c1z++cnzn+.
由留数定理知
Res ⁡ z = ∞ f ( z ) = 1 2 π i ∮ C − f ( z ) d z = − c − 1 ( ∞ ) \operatorname{Res}_{z=\infty} f(z)=\frac{1}{2 \pi \mathrm{i}} \oint_{C-} f(z) \mathrm{d} z=-c_{-1}(\infty) Resz=f(z)=2πi1Cf(z)dz=c1()

如果 f ( z ) f(z) f(z) 在闭平面上只有有限个孤立奇点(包括无穷远点在内) a 1 , a 2 , ⋯   , a n , ∞ a_{1}, a_{2}, \cdots, a_{n}, \infty a1,a2,,an,,则 f ( z ) f(z) f(z) 在各点的留数的总和为 0 。

Res ⁡ z = ∞ f ( z ) = − ∑ k = 1 n Res ⁡ z = a k f ( z ) \operatorname{Res}_{z=\infty} f(z)=-\sum_{k=1}^{n} \operatorname{Res}_{z=a_{k}} f(z) Resz=f(z)=k=1nResz=akf(z)

只要理解前面所学知识,得到该结论便是理所当然的。

无穷远点的积分围线内部外部为无穷远点,内部包含全部其他奇点,两者积分方向相反,和为零。

无穷远点是否为孤立奇点的判断方法:令 t = 1 z t=\frac{1}{z} t=z1,判断 f ( t ) f(t) f(t)在零点是不是孤立奇点。

利用留数计算实积分

有理三角函数的积分

R ( cos ⁡ θ , sin ⁡ θ ) R(\cos \theta, \sin \theta) R(cosθ,sinθ) cos ⁡ θ , sin ⁡ θ \cos \theta, \sin \theta cosθ,sinθ 的有理函数,且在 [ 0 , 2 π ] [0,2 \pi] [0,2π] 上连续,令 z = e i θ ( 0 ⩽ θ ⩽ 2 π ) z=\mathrm{e}^{\mathrm{i} \theta}(0 \leqslant \theta \leqslant 2 \pi) z=eiθ(0θ2π),则
cos ⁡ θ = z + z − 1 2 , sin ⁡ θ = z − z − 1 2 i , d θ = d z i z , \cos \theta=\frac{z+z^{-1}}{2}, \sin \theta=\frac{z-z^{-1}}{2 \mathrm{i}}, \mathrm{d} \theta=\frac{\mathrm{d} z}{\mathrm{i} z}, cosθ=2z+z1,sinθ=2izz1,dθ=izdz,
θ \theta θ 从 0 连续增加到 2 π 2 \pi 2π 时, z z z 沿圆周 ∣ z ∣ = 1 |z|=1 z=1 的正向绕行一周,因此有
∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ = ∮ ∣ z ∣ = 1 R ( z + z − 1 2 , z − z − 1 2 i ) d z i z = 2 π i ∑ ∣ a k ∣ < 1 Res ⁡ z = a k f ( z ) \int_{0}^{2 \pi} R(\cos \theta, \sin \theta) \mathrm{d} \theta=\oint_{|z|=1} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 \mathrm{i}}\right) \frac{\mathrm{d} z}{\mathrm{i} z}=2 \pi \mathrm{i} \sum_{\left|a_{k}\right|<1} \operatorname{Res}_{z=a_{k}} f(z) 02πR(cosθ,sinθ)dθ=z=1R(2z+z1,2izz1)izdz=2πiak<1Resz=akf(z)
右端是 z z z 的有理函数 f ( z ) f(z) f(z) 的围线积分,并且由于 R ( cos ⁡ θ , sin ⁡ θ ) R(\cos \theta, \sin \theta) R(cosθ,sinθ) [ 0 , 2 π ] [0,2 \pi] [0,2π] 上连续,故 f ( z ) f(z) f(z) ∣ z ∣ = 1 |z|=1 z=1 上无奇点。

找出 f ( z ) f(z) f(z)在单位圆内 ∣ z ∣ < 1 |z|<1 z<1的奇点, f ( z ) = 1 i z R ( z + z − 1 2 , z − z − 1 2 i ) f(z)=\frac{1}{\mathrm{iz}} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 \mathrm{i}}\right) f(z)=iz1R(2z+z1,2izz1)

**无穷积分 ** I = ∫ − ∞ ∞ f ( x ) d x I=\int_{-\infty}^{\infty}f(x)dx I=f(x)dx

计算思路:把实积分 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx 的积分区间 [ a , b ] [a, b] [a,b] 看作是复平面实轴上的一段,另外补上辅助曲线 Γ \Gamma Γ,使 [ a , b ] ∪ Γ [a, b] \cup \Gamma [a,b]Γ 构成围线 C C C,所围区域为 D D D,作围线积分
∮ C f ( z ) d z = ∫ a b f ( x ) d x + ∫ Γ f ( z ) d z \oint_{C} f(z) \mathrm{d} z=\int_{a}^{b} f(x) \mathrm{d} x+\int_{\Gamma} f(z) \mathrm{d} z Cf(z)dz=abf(x)dx+Γf(z)dz
如果 f ( z ) f(z) f(z) D D D 内除有限多个奇点 a k a_{k} ak 外解析,且在 D ˉ \bar{D} Dˉ 上连续,则上式左端积分可由留数定理得出。再求得辅助线上的复变积分 ∫ Γ f ( z ) d z \int_{\Gamma} f(z) \mathrm{d} z Γf(z)dz,则可以得到无穷积分 I = ∫ − ∞ ∞ f ( x ) d x I=\int_{-\infty}^{\infty}f(x)dx I=f(x)dx的值,为了求得无穷积分我们引入积分主值的概念。

积分主值

无穷积分有对称极限 lim ⁡ R → + ∞ ∫ − R R f ( x ) d x \lim _{R \rightarrow+\infty} \int_{-R}^{R} f(x) \mathrm{d} x limR+RRf(x)dx 称为积分主值(Principal Value),记为
V . P .   ∫ − ∞ ∞ f ( x ) d x = lim ⁡ R → + ∞ ∫ − R R f ( x ) d x . V.P.\ \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\lim _{R \rightarrow+\infty} \int_{-R}^{R} f(x) \mathrm{d} x . V.P. f(x)dx=R+limRRf(x)dx.
x 0 x_0 x0 f ( x ) f(x) f(x)奇点, b < x 0 < a b<x_0<a b<x0<a,则主值积分
V . P .   ∫ − ∞ ∞ f ( x ) d x = lim ⁡ ϵ → 0 ∫ a x 0 − ϵ f ( x ) d x + ∫ x 0 + ϵ b f ( x ) d x V.P.\ \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\lim_{\epsilon\rightarrow 0}\int^{x_{0}-\epsilon}_{a} f(x) d x+\int_{x_0+\epsilon}^{b} f(x) d x V.P. f(x)dx=ϵ0limax0ϵf(x)dx+x0+ϵbf(x)dx

两种情况对应两种主值积分,主值积分的概念类似于高数中的反常积分。

当反常积分收敛时,主值积分就是它的值。

f ( z ) f(z) f(z)在实轴无奇点,在上半平面除了有限个孤立奇点 b k , ( k = 1 , 2 , ⋯   , n ) b_k,(k=1,2,\cdots,n) bk,(k=1,2,,n)之外处处解析,且 z f ( z ) zf(z) zf(z)在包含实轴的上半平面 当 z → ∞ z\rightarrow \infty z时, z f ( z ) ⟶  一致收敛  0 zf(z)\stackrel{\text { 一致收敛 }}{\longrightarrow}0 zf(z) 一致收敛 0,则
∫ − ∞ ∞ f ( x ) d x = 2 π i ∑ k = 1 n R e s   f ( b k ) ∣ I m   b k > 0 \left.\int_{-\infty}^{\infty}f(x)dx=2\pi i\sum_{k=1}^n Res\ f(b_k)\right|_{Im\ b_k>0} f(x)dx=2πik=1nRes f(bk)Im bk>0

为了令 z f ( z ) ⟶  一致收敛  0 zf(z)\stackrel{\text { 一致收敛 }}{\longrightarrow}0 zf(z) 一致收敛 0,则分母需比分子高一阶以上。

大圆弧定理:设 f ( z ) f(z) f(z) ∞ \infty 点的邻域内连续在 , θ 1 ⩽ arg ⁡ z ⩽ θ 2 \theta_{1} \leqslant \arg z \leqslant \theta_{2} θ1argzθ2 中,当 ∣ z ∣ → ∞ |z| \rightarrow \infty z 时, z f ( z ) z f(z) zf(z) 一致地趋近于 K K K,则
lim ⁡ R → ∞ ∫ C R f ( z ) d z = i K ( θ 2 − θ 1 ) \lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{d} z=\mathrm{i} K\left(\theta_{2}-\theta_{1}\right) RlimCRf(z)dz=iK(θ2θ1)
其中 C R C_{R} CR 是以原点为心、 R R R 为半径、张角为 θ 2 − θ 1 \theta_{2}-\theta_{1} θ2θ1 的圆弧, ∣ z ∣ = R , θ 1 ⩽ arg ⁡ z ⩽ θ 2 |z|=R, \theta_{1} \leqslant \arg z \leqslant \theta_{2} z=R,θ1argzθ2

只有保证分母阶数 m m m比分母阶数 n n n高一阶以上,下式才成立,才可由大圆弧定理得到 z f ( z ) zf(z) zf(z)一致收敛。
∣ z f ( z ) ∣ = ∣ z c 0 z m + ⋯ + c m b 0 z n + ⋯ + b n ∣ = ∣ z m + 1 z n ∣ ∣ c 0 + ⋯ + c m z m b 0 + ⋯ + b n z n ∣ ≤ 1 R ∣ c 0 + ⋯ + c m z m b 0 + ⋯ + b n z n ∣ \begin{aligned}|z f(z)| &=\left|z \frac{c_{0} z^{m}+\cdots+c_{m}}{b_{0} z^{n}+\cdots+b_{n}}\right|=\left|\frac{z^{m+1}}{z^{n}}\right|\left|\frac{c_{0}+\cdots+\frac{c_{m}}{z^{m}}}{b_{0}+\cdots+\frac{b_{n}}{z^{n}}}\right| \\ & \leq \frac{1}{R}\left|\frac{c_{0}+\cdots+\frac{c_{m}}{z^{m}}}{b_{0}+\cdots+\frac{b_{n}}{z^{n}}}\right| \end{aligned} zf(z)=zb0zn++bnc0zm++cm=znzm+1b0++znbnc0++zmcmR1b0++znbnc0++zmcm

含三角函数的无穷积分 I = ∫ − ∞ ∞ f ( x ) cos ⁡ p x   d x I=\int_{-\infty}^{\infty} f(x) \cos p x \mathrm{~d} x I=f(x)cospx dx I = ∫ − ∞ ∞ f ( x ) sin ⁡ p x   d x I=\int_{-\infty}^{\infty} f(x) \sin p x \mathrm{~d} x I=f(x)sinpx dx

由于 ∞ \infty sin ⁡   p x , cos ⁡   p x \sin\ px,\cos \ px sin px,cos px的本性奇点,同时为了表达方便,使用 e i p z e^{ipz} eipz表示。同无穷积分的推导过程,如果 f ( z ) e i p z f(z) \mathrm{e}^{\mathrm{i} p z} f(z)eipz 在上半平面内只有有限个孤立奇点,则可以利用留数定理计算沿闭合围道的积分,则有
∮ C f ( z ) e i p z   d z = 2 π i ∑ k = 1 n   R e s [ f ( b k ) e i p b k ] ∣ I m   b k > 0 = ∫ − R R f ( x ) e i p x   d x + ∫ C R f ( z ) e i p z   d z = ∫ − R R f ( x ) ( cos ⁡ p x + i sin ⁡ p x ) d x + ∫ C R f ( z ) e i p z   d z . \begin{aligned} \oint_{C} f(z) \mathrm{e}^{\mathrm{i} p z} \mathrm{~d} z =\left.2\pi i \sum_{k=1}^n\ Res[f(b_k)e^{ipb_k}]\right|_{Im\ b_k>0}&=\int_{-R}^{R} f(x) \mathrm{e}^{\mathrm{i} p x} \mathrm{~d} x+\int_{C_{R}} f(z) \mathrm{e}^{\mathrm{i} p z} \mathrm{~d} z \\ &=\int_{-R}^{R} f(x)(\cos p x+\mathrm{i} \sin p x) \mathrm{d} x+\int_{C_{R}} f(z) \mathrm{e}^{\mathrm{i} p z} \mathrm{~d} z . \end{aligned} Cf(z)eipz dz=2πik=1n Res[f(bk)eipbk]Im bk>0=RRf(x)eipx dx+CRf(z)eipz dz=RRf(x)(cospx+isinpx)dx+CRf(z)eipz dz.
这样,只要能够计算出 lim ⁡ R → ∞ ∫ C R f ( z ) e i p z   d z \lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{e}^{\mathrm{i} p z} \mathrm{~d} z limRCRf(z)eipz dz,然后分别比较实部和虚部,就可以求得积分 ∫ − ∞ ∞ f ( x ) cos ⁡ p x   d x \int_{-\infty}^{\infty} f(x) \cos p x \mathrm{~d} x f(x)cospx dx ∫ − ∞ ∞ f ( x ) sin ⁡ p x   d x \int_{-\infty}^{\infty} f(x) \sin p x \mathrm{~d} x f(x)sinpx dx。为此,引入若当(Jordan) 引理。

若当(Jordan)引理 设在 0 ⩽ arg ⁡ z ⩽ π 0 \leqslant \arg z \leqslant \pi 0argzπ 范围内,当 ∣ z ∣ → ∞ |z| \rightarrow \infty z f ( z ) f(z) f(z) 一致地趋于 0 ,则
lim ⁡ R → ∞ ∫ C R f ( z ) e i p z   d z = 0 \lim _{R \rightarrow \infty} \int_{C_{R}} f(z) \mathrm{e}^{\mathrm{i} p z} \mathrm{~d} z=0 RlimCRf(z)eipz dz=0
其中 p > 0 p>0 p>0 C R C_R CR是以原点为圆心, R R R为圆弧半径。

当积分路径含有有限个奇点时,我们引入小圆弧定理挖去奇点。

小圆弧引理:设 f ( z ) f(z) f(z) 沿圆弧 S r : z − a = r e i θ ( θ 1 ⩽ θ ⩽ θ 2 , r S_{r}: z-a=r \mathrm{e}^{i \theta}\left(\theta_{1} \leqslant \theta \leqslant \theta_{2}, r\right. Sr:za=reiθ(θ1θθ2,r 充分小)上连续,且 lim ⁡ r → 0 ( z − a ) f ( z ) = λ \lim _{r \rightarrow 0}(z-a) f(z)=\lambda limr0(za)f(z)=λ S r S_{r} Sr 上一致地成立,则有
lim ⁡ r → 0 ∫ S r f ( z ) d z = i ( θ 2 − θ 1 ) λ . \lim _{r \rightarrow 0} \int_{S_{r}} f(z) \mathrm{d} z=\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda . r0limSrf(z)dz=i(θ2θ1)λ.

最后以一道例题收尾

例题:计算狄利克雷积分 ∫ 0 + ∞ sin ⁡ x x   d x \int_{0}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x 0+xsinx dx.
解: ∫ 0 + ∞ sin ⁡ x x   d x \int_{0}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x 0+xsinx dx 存在,且
∫ 0 + ∞ sin ⁡ x x   d x = 1 2   V ⋅ P ⋅ ∫ − ∞ + ∞ sin ⁡ x x   d x = 1 2 I m ∫ − ∞ + ∞ e i x x   d x . \int_{0}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{1}{2} \mathrm{~V} \cdot \mathrm{P} \cdot \int_{-\infty}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{1}{2} \mathrm{Im} \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{\mathrm{i} x}}{x} \mathrm{~d} x . 0+xsinx dx=21 VP+xsinx dx=21Im+xeix dx.
考虑函数 f ( z ) = e i z / z f(z)=\mathrm{e}^{\mathrm{iz}}/z f(z)=eiz/z 沿图所示路径 C C C 的积分。

根据柯西积分定理得
∮ C f ( z ) d z = 0 \oint_{C} f(z) \mathrm{d} z=0 Cf(z)dz=0
或写成
∫ r R e i x x   d x + ∫ C R e i z z   d z + ∫ − R − r e i x x   d x − ∫ C r e i z z   d z = 0 \int_{r}^{R} \frac{\mathrm{e}^{\mathrm{i} x}}{x} \mathrm{~d} x+\int_{C_{R}} \frac{\mathrm{e}^{\mathrm{i} z}}{z} \mathrm{~d} z+\int_{-R}^{-r} \frac{\mathrm{e}^{\mathrm{ix}}}{x} \mathrm{~d} x-\int_{C_{r}} \frac{\mathrm{e}^{\mathrm{iz}}}{z} \mathrm{~d} z=0 rRxeix dx+CRzeiz dz+Rrxeix dxCrzeiz dz=0
这里 C R C_{R} CR C r C_{r} Cr 分别表示半圆周 z = R e i θ z=R \mathrm{e}^{\mathrm{i} \theta} z=Reiθ z = r e i θ ( 0 ⩽ θ ⩽ π z=r \mathrm{e}^{\mathrm{i} \theta} \quad(0 \leqslant \theta \leqslant \pi z=reiθ(0θπ, r < R ) r<R) r<R)。再令 r → 0 , R → + ∞ r \rightarrow 0, R \rightarrow+\infty r0,R+,由若尔当引理知
lim ⁡ R → + ∞ ∫ C R e i z z   d z = 0 , \lim _{R \rightarrow+\infty} \int_{C_{R}} \frac{\mathrm{e}^{\mathrm{iz}}}{z} \mathrm{~d} z=0, R+limCRzeiz dz=0,
由小圆弧引理知
lim ⁡ r → 0 ∫ C r e i z z   d z = π i \lim _{r \rightarrow 0} \int_{C_{r}} \frac{\mathrm{e}^{\mathrm{i} z}}{z} \mathrm{~d} z=\pi \mathrm{i} r0limCrzeiz dz=πi
从而
 V. P.  ∫ − ∞ + ∞ e i x x   d x = i π ,  \text { V. P. } \int_{-\infty}^{+\infty} \frac{\mathrm{e}^{\mathrm{i} x}}{x} \mathrm{~d} x=\mathrm{i} \pi \text {, }  V. P. +xeix dx=iπ
于是
∫ 0 + ∞ sin ⁡ x x   d x = π 2 . \int_{0}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2} . 0+xsinx dx=2π.
再由微积分相关知识得
∫ 0 + ∞ sin ⁡ λ x x   d x = { π / 2 , λ > 0 , 0 , λ = 0 , − π / 2 , λ < 0. \int_{0}^{+\infty} \frac{\sin \lambda x}{x} \mathrm{~d} x= \begin{cases}\pi / 2, & \lambda>0, \\ 0, & \lambda=0, \\ -\pi / 2, & \lambda<0 .\end{cases} 0+xsinλx dx=π/2,0,π/2,λ>0,λ=0,λ<0.

解析函数的精髓便在这章揭露,我们可以利用解析函数的特殊性质去计算特殊的围线积分,甚至可以利用这种性质去计算实积分。那么接下来我们对解析函数复积分的计算方法进行总结回顾。

下一章节:解析函数复积分

专栏目录:数学物理方法专栏目录

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值