留数与留数定理

留数定义

z 0 z_0 z0是解析函数f(z)的孤立奇点,我们把 f ( z ) f(z) f(z) z 0 z_0 z0处的洛朗展开中的负一次幂项的系数 C − 1 C_{-1} C1称为 f ( z ) f(z) f(z) z 0 z_0 z0的留数。记作 R e s [ f ( z ) , z 0 ] Res\left[f(z),z_0 \right ] Res[f(z),z0],即
R e s [ f ( z ) , z 0 ] = C − 1 Res\left[f(z),z_0 \right ]=C_{-1} Res[f(z),z0]=C1
显然,留数 C − 1 C_{-1} C1就是积分 ∮ C f ( z ) d z \oint_{C}f(z)\mathrm{d}z Cf(z)dz的值,其中 C C C为解析函数 f ( z ) f(z) f(z) z 0 z_0 z0的去心领域内绕 z 0 z_0 z0的闭曲线

无穷远点的留数

∞ \infty f ( z ) f(z) f(z)的孤立奇点,即 f ( z ) f(z) f(z)在圆环域 R < ∣ z ∣ < + ∞ R<\left| z \right | <+\infty R<z<+内解析,则称
1 2 π i ∮ C − f ( z ) d z ( C : ∣ z ∣ = ρ > R ) \frac{1}{2\pi i}\oint_{C^{-}}f(z)\mathrm{d}z(C:\left| z \right|=\rho >R) 2πi1Cf(z)dz(C:z=ρ>R)
f ( z ) f(z) f(z) ∞ \infty 的留数,记为 R e s [ f ( z ) , ∞ ] Res\left[f(z),\infty \right ] Res[f(z),]
f ( z ) f(z) f(z) R < ∣ z ∣ < + ∞ R<\left| z \right | <+\infty R<z<+的洛朗展式为 f ( z ) = ∑ n = − ∞ + ∞ C n z n f(z)=\sum_{n=-\infty}^{+\infty}C_n z^n f(z)=n=+Cnzn,则有
R e s [ f ( z ) , ∞ ] = − C − 1 Res\left[f(z),\infty \right ]=-C_{-1} Res[f(z),]=C1

留数定理

设函数 f ( z ) f(z) f(z)在区域 D D D内除有限孤立奇点 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots, z_n z1,z2,,zn处处解析, C C C D D D内包围各起点的一条正向简单闭曲线,那么
∮ C f ( z ) d z = 2 π i ∑ k = 1 n R e s [ f ( z ) , z 0 ] \oint_{C}f(z)\mathrm{d}z=2\pi i \sum_{k=1}^{n}Res\left[f(z),z_0 \right ] Cf(z)dz=2πik=1nRes[f(z),z0]

留数计算

准则1

z 0 z_0 z0 f ( z ) f(z) f(z)的简单极点,则
R e s [ f ( z ) , z 0 ] = lim ⁡ z → z 0 ( z − z 0 ) f ( z ) Res\left[f(z),z_0 \right ]=\lim\limits_{z\to z_0}(z-z_0)f(z) Res[f(z),z0]=zz0lim(zz0)f(z)
证明:
f ( z ) = C − 1 z − z 0 + ∑ n = 0 ∞ C n ( z − z 0 ) n ( 0 < ∣ z − z 0 ∣ < δ ) ( z − z 0 ) f ( z ) = C − 1 + ∑ n = 0 ∞ C n ( z − z 0 ) n + 1 lim ⁡ z → 0 ( z − z 0 ) f ( z ) = C − 1 \begin{aligned} f(z)&=\frac{C_{-1}}{z-z_0}+\sum_{n=0}^{\infty} C_n(z-z_0)^{n}(0<\left| z-z_0 \right| <\delta) \\ (z-z_0)f(z)&=C_{-1}+\sum_{n=0}^{\infty} C_n(z-z_0)^{n+1} \\ \lim\limits_{z\to 0} (z-z_0)f(z)&=C_{-1} \end{aligned} f(z)(zz0)f(z)z0lim(zz0)f(z)=zz0C1+n=0Cn(zz0)n(0<zz0<δ)=C1+n=0Cn(zz0)n+1=C1

准则2

f ( z ) = P ( z ) Q ( z ) f(z)=\frac{P(z)}{Q(z)} f(z)=Q(z)P(z),其中 P ( z ) , Q ( z ) P(z),Q(z) P(z),Q(z) z 0 z_0 z0处解析,若 P ( z 0 ) ≠ 0 , z 0 P(z_0)\neq 0,z_0 P(z0)=0,z0 Q ( z ) Q(z) Q(z)的一阶零点,则 z 0 z_0 z0 f ( z ) f(z) f(z)的一阶极点,且
R e s [ f ( z ) , z 0 ] = P ( z 0 ) Q ′ ( z 0 ) Res\left[f(z),z_0 \right ]=\frac{P(z_0)}{Q'(z_0)} Res[f(z),z0]=Q(z0)P(z0)
证明:
因为 z 0 z_0 z0 Q ( z ) Q(z) Q(z)的一阶零点,故 z 0 z_0 z0 1 Q ( z ) \frac{1}{Q(z)} Q(z)1的一阶极点,因此
存在 ϕ ( z ) \phi(z) ϕ(z) z 0 z_0 z0处解析,且 ϕ ( z 0 ) ≠ 0 \phi(z_0)\neq 0 ϕ(z0)=0,使得
1 Q ( z ) = 1 z − z 0 ϕ ( z ) \frac{1}{Q(z)}=\frac{1}{z-z_0}\phi(z) Q(z)1=zz01ϕ(z)
f ( z ) = g ( z ) z − z 0 f(z)=\frac{g(z)}{z-z_0} f(z)=zz0g(z)
其中 g ( z ) = P ( z ) ϕ ( z ) , g ( z ) g(z)=P(z)\phi(z),g(z) g(z)=P(z)ϕ(z),g(z) z 0 z_0 z0处解析,故 z 0 z_0 z0 f ( z ) f(z) f(z)的一阶极点.
根据准则1
C − 1 = lim ⁡ z → 0 ( z − z 0 ) f ( z ) = lim ⁡ z → 0 P ( z ) Q ( z ) − Q ( z 0 ) z − z 0 = P ( z 0 ) Q ′ ( z 0 ) C_{-1}=\lim\limits_{z\to 0}(z-z_0)f(z)=\lim\limits_{z\to 0}\frac{P(z)}{\frac{Q(z)-Q(z_0)}{z-z_0}}=\frac{P(z_0)}{Q'(z_0)} C1=z0lim(zz0)f(z)=z0limzz0Q(z)Q(z0)P(z)=Q(z0)P(z0)

准则3

如果 z 0 z_0 z0 f ( z ) f(z) f(z) m m m阶极点,则
R e s [ f ( z ) , z 0 ] = 1 ( m − 1 ) ! lim ⁡ z → 0 d m − 1 d z m − 1 [ ( z − z 0 ) m f ( z ) ] Res\left[f(z),z_0 \right ]=\frac{1}{(m-1)!}\lim\limits_{z\to 0}\frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}}\left[(z-z_0)^{m}f(z) \right ] Res[f(z),z0]=(m1)!1z0limdzm1dm1[(zz0)mf(z)]
证明:由于
f ( z ) = ∑ k = − m ∞ C k ( z − z 0 ) k ( z − z 0 ) m f ( z ) = ∑ k = − m ∞ C k ( z − z 0 ) k + m lim ⁡ z → 0 d m − 1 d z m − 1 [ ( z − z 0 ) m f ( z ) ] = C − 1 ( m − 1 ) ! \begin{aligned} f(z)&=\sum_{k=-m}^{\infty}C_{k}(z-z_0)^{k}\\ (z-z_0)^{m}f(z)&=\sum_{k=-m}^{\infty}C_{k}(z-z_0)^{k+m}\\ \lim\limits_{z\to 0}\frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}}\left[(z-z_0)^{m}f(z) \right ] &= C_{-1}(m-1)! \end{aligned} f(z)(zz0)mf(z)z0limdzm1dm1[(zz0)mf(z)]=k=mCk(zz0)k=k=mCk(zz0)k+m=C1(m1)!

R e s [ f ( z ) , z 0 ] = 1 ( m − 1 ) ! lim ⁡ z → 0 d m − 1 d z m − 1 [ ( z − z 0 ) m f ( z ) ] Res\left[f(z),z_0 \right ]=\frac{1}{(m-1)!}\lim\limits_{z\to 0}\frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}}\left[(z-z_0)^{m}f(z) \right ] Res[f(z),z0]=(m1)!1z0limdzm1dm1[(zz0)mf(z)]

引理

f ( z ) f(z) f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远点),设为 z 1 , z 2 , ⋯   , z n , ∞ z_1,z_2,\cdots,z_n,\infty z1,z2,,zn,,则 f ( z ) f(z) f(z)在各点的留数总和为 0 0 0
证明:
考虑充分大的正数 R R R,使得 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn全在 ∣ z ∣ < R \left|z\right|<R z<R内,于是由留数定理可得
∮ ∣ z ∣ = R f ( z ) d z = 2 π i ∑ k = 1 n R e s [ f ( z ) , z 0 ] \oint_{\left|z\right| =R}f(z)\mathrm{d}z=2\pi i \sum_{k=1}^{n}Res\left[f(z),z_0 \right ] z=Rf(z)dz=2πik=1nRes[f(z),z0]

1 2 π i ∮ ∣ z ∣ = R f ( z ) d z = − R e s [ f ( z ) , ∞ ] \frac{1}{2\pi i}\oint_{\left| z\right| =R}f(z)\mathrm{d}z=-Res\left[f(z),\infty \right ] 2πi1z=Rf(z)dz=Res[f(z),]
所以
∑ k = 1 n R e s [ f ( z ) , z 0 ] + R e s [ f ( z ) , ∞ ] = 0 \sum_{k=1}^{n}Res\left[f(z),z_0 \right ]+Res\left[f(z),\infty \right ]=0 k=1nRes[f(z),z0]+Res[f(z),]=0

准则4

R e s [ f ( z ) , ∞ ] = − R e s [ f ( 1 z ) 1 z 2 , 0 ] Res\left[f(z),\infty \right ]=-Res\left[f(\frac{1}{z})\frac{1}{z^2},0 \right ] Res[f(z),]=Res[f(z1)z21,0]
证明:
在无穷远点的留数定义中,设 z = ρ e i θ z=\rho e^{i\theta} z=ρeiθ,并设 z = 1 ξ z=\frac{1}{\xi} z=ξ1,则有 ξ = r e i ϕ ( r = 1 ρ , ϕ = − θ ) \xi=re^{i\phi}(r=\frac{1}{\rho},\phi=-\theta) ξ=reiϕ(r=ρ1,ϕ=θ)
R e s [ f ( z ) , ∞ ] = 1 2 π i ∮ C − f ( z ) d z = 1 2 π i ∫ 0 − 2 π f ( ρ e i θ ) ρ i e i θ d θ = − 1 2 π i ∫ 0 2 π f ( 1 r e i ϕ ) i r e i ϕ d ϕ = − 1 2 π i ∫ 0 2 π f ( 1 r e i ϕ ) 1 ( r e i ϕ ) 2 d ( r e i ϕ ) = − 1 2 π i ∮ ∣ ξ ∣ = 1 ρ f ( 1 ξ ) 1 ξ 2 d ξ \begin{aligned} &\quad Res\left[f(z),\infty \right ]\\ &=\frac{1}{2\pi i}\oint_{C^{-}}f(z)\mathrm{d}z\\ &=\frac{1}{2\pi i}\int_{0}^{-2\pi} f(\rho e^{i\theta})\rho ie^{i\theta}\mathrm{d}\theta\\ &=-\frac{1}{2\pi i}\int_{0}^{2\pi} f(\frac{1}{re^{i\phi}}) \frac{i}{re^{i\phi}}\mathrm{d}\phi\\ &=-\frac{1}{2\pi i}\int_{0}^{2\pi}f(\frac{1}{re^{i\phi}})\frac{1}{(re^{i\phi})^2}\mathrm{d}(re^{i\phi})\\ &=-\frac{1}{2\pi i}\oint_{\left|\xi \right|=\frac{1}{\rho}}f(\frac{1}{\xi})\frac{1}{\xi^{2}}\mathrm{d}\xi \end{aligned} Res[f(z),]=2πi1Cf(z)dz=2πi102πf(ρeiθ)ρieiθdθ=2πi102πf(reiϕ1)reiϕidϕ=2πi102πf(reiϕ1)(reiϕ)21d(reiϕ)=2πi1ξ=ρ1f(ξ1)ξ21dξ
由于 f ( z ) f(z) f(z) ρ < ∣ z ∣ < + ∞ \rho <\left|z\right|<+\infty ρ<z<+内解析,从而 f ( 1 ξ ) 在 0 < ∣ ξ ∣ < 1 ρ f(\frac{1}{\xi})在0<\left|\xi\right|<\frac{1}{\rho} f(ξ1)0<ξ<ρ1内解析,因此 f ( 1 ξ ) 1 ξ 2 在 ∣ ξ ∣ < 1 ρ f(\frac{1}{\xi})\frac{1}{\xi^{2}}在\left|\xi\right|<\frac{1}{\rho} f(ξ1)ξ21ξ<ρ1内除了
ξ = 0 \xi=0 ξ=0外没有其他的奇点,由留数定理得
1 2 π i ∮ ∣ ξ ∣ = 1 ρ f ( 1 ξ ) 1 ξ 2 d ξ = R e s [ f ( 1 ξ ) 1 ξ 2 , 0 ] \frac{1}{2\pi i}\oint_{\left|\xi \right|=\frac{1}{\rho}}f(\frac{1}{\xi})\frac{1}{\xi^{2}}\mathrm{d}\xi=Res\left[f(\frac{1}{\xi})\frac{1}{\xi^{2}},0 \right ] 2πi1ξ=ρ1f(ξ1)ξ21dξ=Res[f(ξ1)ξ21,0]

留数定理算实积分

类型1

形如 ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ \int_{0}^{2\pi}R(\cos \theta ,\sin \theta)\mathrm{d}\theta 02πR(cosθ,sinθ)dθ的积分
z = e i θ , d z = i e i θ d θ z=e^{i\theta},\mathrm{d}z=ie^{i\theta}\mathrm{d}\theta z=eiθ,dz=ieiθdθ,
sin ⁡ θ = e i θ − e i θ 2 i = z 2 − 1 2 i z , cos ⁡ θ = e i θ + e i θ 2 = z 2 + 1 2 z \sin \theta =\frac{e^{i\theta}-e^{i\theta}}{2i}=\frac{z^2-1}{2iz},\cos \theta =\frac{e^{i\theta}+e^{i\theta}}{2}=\frac{z^2+1}{2z} sinθ=2ieiθeiθ=2izz21,cosθ=2eiθ+eiθ=2zz2+1
R ( cos ⁡ θ , sin ⁡ θ ) R(\cos \theta ,\sin \theta ) R(cosθ,sinθ) cos ⁡ θ , sin ⁡ θ \cos \theta,\sin \theta cosθ,sinθ的有理函数,它作为 θ \theta θ的函数,在 0 ≤ θ ≤ 2 π 0\le \theta \le 2\pi 0θ2π上连续。当 θ \theta θ经历变程 [ 0 , 2 π ] \left[0,2\pi \right ] [0,2π]时,对应的 z z z正好沿着单位圆 ∣ z ∣ = 1 \left|z\right|=1 z=1的正向绕行一周, f ( z ) = R ( z 2 + 1 2 z , z 2 − 1 2 i z ) f(z)=R\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right ) f(z)=R(2zz2+1,2izz21)在积分闭路上 ∣ z ∣ = 1 \left|z\right|=1 z=1上无奇点,则
∮ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ = ∮ ∣ z ∣ = 1 R ( z 2 + 1 2 z , z 2 − 1 2 i z ) d z i z = ∮ ∣ z ∣ = 1 f ( z ) d z = 2 π i ∑ k = 1 n R e s [ f ( z ) , z k ] \begin{aligned} &\quad \oint_{0}^{2\pi}R(\cos \theta,\sin \theta)\mathrm{d}\theta \\ &=\oint_{\left|z\right|=1}R(\frac{z^2+1}{2z},\frac{z^2-1}{2iz})\frac{\mathrm{d}z}{iz} \\ &=\oint_{\left|z\right| =1}f(z)\mathrm{d}z \\ &=2\pi i\sum_{k=1}^{n}Res\left[f(z),z_k \right ] \end{aligned} 02πR(cosθ,sinθ)dθ=z=1R(2zz2+1,2izz21)izdz=z=1f(z)dz=2πik=1nRes[f(z),zk]

小圆弧引理

f ( z ) f(z) f(z) C : z = z 0 + ρ e i θ ( θ ∈ [ α , β ] ) C:z=z_0+\rho e^{i\theta}(\theta \in \left[\alpha,\beta \right ]) C:z=z0+ρeiθ(θ[α,β])上连续,且 lim ⁡ z → z 0 ( z − z 0 ) f ( z ) = A \lim\limits_{z\to z_0}(z-z_0)f(z)=A zz0lim(zz0)f(z)=A,则
lim ⁡ z → z 0 ∫ C f ( z ) d z = i ( β − α ) A \lim\limits_{z\to z_0}\int_{C}f(z)\mathrm{d}z=i(\beta-\alpha)A zz0limCf(z)dz=i(βα)A

大圆弧引理

f ( z ) f(z) f(z) C : z = z 0 + ρ e i θ ( θ ∈ [ α , β ] ) C:z=z_0+\rho e^{i\theta}(\theta \in \left[\alpha,\beta \right ]) C:z=z0+ρeiθ(θ[α,β])上连续,且 lim ⁡ z → ∞ ( z − z 0 ) f ( z ) = A \lim\limits_{z\to \infty}(z-z_0)f(z)=A zlim(zz0)f(z)=A,则
lim ⁡ z → ∞ ∫ C f ( z ) d z = i ( β − α ) A \lim\limits_{z\to \infty}\int_{C}f(z)\mathrm{d}z=i(\beta-\alpha)A zlimCf(z)dz=i(βα)A

类型2

形如 ∫ − ∞ + ∞ R ( x ) d x \int_{-\infty}^{+\infty}R(x)\mathrm{d}x +R(x)dx的积分
其中 R ( z ) = P ( z ) Q ( z ) = a 0 z n + a 1 z n − 1 + ⋯ + a n b 0 z m + b 1 z m − 1 + ⋯ + b m ( a 0 , b 0 ≠ 0 , m − n ≥ 2 ) R(z)=\frac{P(z)}{Q(z)}=\frac{a_0 z^n +a_1 z^{n-1}+\cdots+a_n}{b_0 z^m +b_1 z^{m-1}+\cdots+b_m}(a_0,b_0\neq 0,m-n\ge 2) R(z)=Q(z)P(z)=b0zm+b1zm1++bma0zn+a1zn1++an(a0,b0=0,mn2)
满足

  1. Q ( z ) Q(z) Q(z) P ( z ) P(z) P(z)至少高两次
  2. Q ( z ) Q(z) Q(z)在实轴上无零点
  3. R ( z ) R(z) R(z)在上半平面 I m   z > 0 Im\ z >0 Im z>0内的极点为 z k ( k = 1 , 2 , ⋯   , n ) z_k(k=1,2,\cdots,n) zk(k=1,2,,n)

则有
∫ − ∞ + ∞ R ( x ) d x = 2 π i ∑ k = 1 n R e s [ R ( z ) , z k ] \int_{-\infty}^{+\infty}R(x)\mathrm{d}x=2\pi i\sum_{k=1}^{n}Res\left[R(z),z_k \right ] +R(x)dx=2πik=1nRes[R(z),zk]
证明:
作围道
在这里插入图片描述
C R : z = R e i θ ( 0 ≤ θ ≤ π ) C_R:z=Re^{i\theta}(0\le \theta \le \pi) CR:z=Reiθ(0θπ)
R R R充分大,所有的极点都包含在积分路径内,
∫ − R R R ( x ) d x + ∫ C R R ( z ) d z = 2 π i ∑ k = 1 n R e s [ R ( z ) , z k ] \int_{-R}^{R}R(x)\mathrm{d}x+\int_{C_R}R(z)\mathrm{d}z=2\pi i\sum_{k=1}^{n}Res\left[R(z),z_k \right ] RRR(x)dx+CRR(z)dz=2πik=1nRes[R(z),zk]
lim ⁡ R → + ∞ z R ( z ) = 0 \lim \limits_{R\to +\infty}zR(z)=0 R+limzR(z)=0
由大圆弧引理
lim ⁡ R → + ∞ ∫ C R R ( z ) d z = i ( π − 0 ) 0 = 0 \lim\limits_{R\to +\infty}\int_{C_R}R(z)\mathrm{d}z=i(\pi-0) 0=0 R+limCRR(z)dz=i(π0)0=0
所以
∫ − ∞ + ∞ R ( x ) d x = 2 π i ∑ k = 1 n R e s [ R ( z ) , z k ] \int_{-\infty}^{+\infty}R(x)\mathrm{d}x=2\pi i\sum_{k=1}^{n}Res\left[R(z),z_k \right ] +R(x)dx=2πik=1nRes[R(z),zk]

若尔当引理

引理

0 ≤ θ ≤ π 2 0\le \theta \le \frac{\pi}{2} 0θ2π时, 2 π θ ≤ sin ⁡ θ \frac{2\pi }{\theta }\le\sin \theta θ2πsinθ
证明:
f ( θ ) = sin ⁡ θ 2 θ π = π sin ⁡ θ 2 θ f(\theta)=\frac{\sin \theta }{\frac{2\theta}{\pi}}=\frac{\pi \sin \theta}{2\theta} f(θ)=π2θsinθ=2θπsinθ
f ′ ( θ ) = π 2 θ cos ⁡ θ − sin ⁡ θ θ 2 f'(\theta)=\frac{\pi}{2}\frac{\theta \cos \theta - \sin \theta}{\theta^2} f(θ)=2πθ2θcosθsinθ
g ( θ ) = θ cos ⁡ θ − sin ⁡ θ g(\theta)=\theta \cos \theta -\sin \theta g(θ)=θcosθsinθ
g ′ ( θ ) = − θ sin ⁡ θ < 0 g'(\theta)=-\theta \sin\theta<0 g(θ)=θsinθ<0
g ( θ ) ≤ g ( 0 ) = 0 g(\theta)\le g(0)=0 g(θ)g(0)=0
f ′ ( θ ) ≤ 0 f'(\theta)\le0 f(θ)0
f ( θ ) ≥ f ( π 2 ) = 1 f(\theta)\ge f(\frac{\pi}{2})=1 f(θ)f(2π)=1
2 π θ < sin ⁡ θ \frac{2\pi }{\theta }<\sin \theta θ2π<sinθ

若尔当引理

设函数 g ( z ) g(z) g(z)在闭区域 θ 1 ≤ arg ⁡ z ≤ θ 2 , R 0 ≤ ∣ z ∣ ≤ + ∞ ( R 0 ≥ 0 , 0 ≤ θ 1 ≤ θ 2 ≤ π ) \theta_1\le \arg z \le \theta_2,R_0\le\left| z\right| \le +\infty(R_0\ge 0 ,0\le \theta_1\le \theta_2\le \pi) θ1argzθ2,R0z+(R00,0θ1θ2π)上连续,并设 C R C_R CR是该闭区域上的一段以原点为中心, R ( R > R 0 ) R(R>R_0) R(R>R0)为半径的圆弧,若当z在该闭区域上时 lim ⁡ z → ∞ g ( z ) = 0 \lim \limits_{z\to \infty}g(z)=0 zlimg(z)=0
则对任何 a > 0 a>0 a>0,有
lim ⁡ R → ∞ ∫ C R g ( z ) e i a z d z = 0 \lim\limits_{R\to \infty}\int_{C_R}g(z)e^{iaz}\mathrm{d}z=0 RlimCRg(z)eiazdz=0
证明:
lim ⁡ z → ∞ g ( z ) = 0 \lim \limits_{z\to \infty}g(z)=0 zlimg(z)=0
∀ ϵ > 0 , ∃ R 1 ( ϵ ) > 0 \forall \epsilon>0,\exists R_1(\epsilon)>0 ϵ>0,R1(ϵ)>0,当 R > R 1 ( ϵ ) R>R_1(\epsilon) R>R1(ϵ)时,对一切在 C R C_R CR上的 z z z,有 ∣ g ( z ) ∣ < ϵ \left|g(z)\right|<\epsilon g(z)<ϵ,于是
∣ ∫ C R g ( z ) e i a z d z ∣ = ∣ ∫ θ 1 θ 2 g ( R e i θ ) e i a R e i θ R e i θ i d θ ∣ = ∣ ∫ θ 1 θ 2 g ( R e i θ ) e i a R cos ⁡ θ e i a R i sin ⁡ θ R e i θ i d θ ∣ ≤ R ∫ θ 1 θ 2 ∣ g ( R e i θ ) ∣ e − a R sin ⁡ θ d θ < R ϵ ∫ θ 1 θ 2 e − a R sin ⁡ θ d θ ≤ R ϵ ∫ 0 π e − a R sin ⁡ θ d θ = 2 R ϵ ∫ 0 π 2 e − a R sin ⁡ θ d θ ≤ 2 R ϵ ∫ 0 π 2 e − a R 2 θ π d θ = π ϵ a ( 1 − e − a R ) < π ϵ a \begin{aligned} &\quad \left|\int_{C_R}g(z)e^{iaz}\mathrm{d}z\right|\\ &=\left|\int_{\theta_1}^{\theta_2} g(Re^{i\theta})e^{iaRe^{i\theta}}Re^{i\theta}i\mathrm{d}\theta\right|\\ &=\left|\int_{\theta_1}^{\theta_2} g(Re^{i\theta})e^{iaR\cos \theta}e^{iaRi\sin \theta}Re^{i\theta}i\mathrm{d}\theta\right|\\ &\le R\int_{\theta_1}^{\theta_2}\left|g(Re^{i\theta})\right|e^{-aR\sin \theta}\mathrm{d}\theta\\ &< R\epsilon \int_{\theta_1}^{\theta_2}e^{-aR\sin\theta}\mathrm{d}\theta\\ &\le R\epsilon \int_{0}^{\pi}e^{-aR\sin\theta}\mathrm{d}\theta\\ &= 2R\epsilon \int_{0}^{\frac{\pi}{2}}e^{-aR\sin\theta}\mathrm{d}\theta\\ &\le 2R\epsilon \int_{0}^{\frac{\pi}{2}}e^{-aR\frac{2\theta}{\pi}}\mathrm{d}\theta\\ &=\frac{\pi\epsilon}{a}(1-e^{-aR})\\ &<\frac{\pi \epsilon}{a} \end{aligned} CRg(z)eiazdz=θ1θ2g(Reiθ)eiaReiθReiθidθ=θ1θ2g(Reiθ)eiaRcosθeiaRisinθReiθidθRθ1θ2g(Reiθ)eaRsinθdθ<Rϵθ1θ2eaRsinθdθRϵ0πeaRsinθdθ=2Rϵ02πeaRsinθdθ2Rϵ02πeaRπ2θdθ=aπϵ(1eaR)<aπϵ
所以
lim ⁡ R → ∞ ∫ C R g ( z ) e i a z d z = 0 \lim\limits_{R\to \infty}\int_{C_R}g(z)e^{iaz}\mathrm{d}z=0 RlimCRg(z)eiazdz=0

类型3

形如 ∫ − ∞ + ∞ R ( x ) e i a z d z ( a > 0 ) \int_{-\infty}^{+\infty}R(x)e^{iaz}\mathrm{d}z(a>0) +R(x)eiazdz(a>0)
满足

  1. R ( x ) R(x) R(x)是真分式
  2. 实轴上无奇点


∫ − ∞ + ∞ R ( x ) e i a x d x = 2 π i ∑ k = 1 n R e s [ f ( z ) , z k ] \int_{-\infty}^{+\infty}R(x)e^{iax}\mathrm{d}x=2\pi i \sum_{k=1}^{n}Res\left[f(z),z_k \right ] +R(x)eiaxdx=2πik=1nRes[f(z),zk]
证明:
作围道
在这里插入图片描述
C R : z = R e i θ ( 0 ≤ θ ≤ π ) C_R:z=Re^{i\theta}(0\le \theta \le \pi) CR:z=Reiθ(0θπ)
R R R充分大,所有的极点都包含在积分路径内,
∫ − R R R ( x ) e i a z d x + ∫ C R R ( z ) e i a z d z = 2 π i ∑ k = 1 n R e s [ R ( z ) , z k ] \int_{-R}^{R}R(x)e^{iaz}\mathrm{d}x+\int_{C_R}R(z)e^{iaz}\mathrm{d}z=2\pi i\sum_{k=1}^{n}Res\left[R(z),z_k \right ] RRR(x)eiazdx+CRR(z)eiazdz=2πik=1nRes[R(z),zk]
由若尔当引理
∫ C R R ( z ) e i a z d z = 0 \int_{C_R}R(z)e^{iaz}\mathrm{d}z=0 CRR(z)eiazdz=0
所以
∫ − ∞ + ∞ R ( x ) e i a x d x = 2 π i ∑ k = 1 n R e s [ f ( z ) , z k ] \int_{-\infty}^{+\infty}R(x)e^{iax}\mathrm{d}x=2\pi i \sum_{k=1}^{n}Res\left[f(z),z_k \right ] +R(x)eiaxdx=2πik=1nRes[f(z),zk]

  • 15
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值