1 范围
本文件规定了互联网金融场景下智能风险防控技术所需满足的技术框架、功能要求、技术要求、实
现的安全要求以及运行要求等。
本文件适用于开展互联网金融业务的组织机构,以及提供智能风险防控技术服务的机构建设、运行
和优化智能风险防控系统防控互联网金融风险。
2 规范性引用文件
下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文
件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于
本文件。
GB/T 35273 信息安全技术 个人信息安全规范
GB/T 35274 信息安全技术 大数据服务安全能力要求
GB/T 37721 信息技术 大数据分析系统功能要求
GB/T 37722 信息技术 大数据存储与处理系统功能要求
GB/T 37961 信息技术服务 服务基本要求
3 术语和定义
下列术语和定义适用于本文件。
3.1
风险防控 risk prevention and control
为有效控制或减少风险事件发生可能性、降低风险事件发生时造成损失而采取的措施和方法。
3.2
风 险 识 别 risk identification
对影响各类目标实现的潜在事项或因素予以全面识别,进行系统分类并查找出风险原因的过程。
注1:风险识别包括对风险源、事件及其原因和潜在后果的识别。
注 2 :
风险识别可能涉及历史数据、理论分析、专家意见以及利益相关者的需求。
[来源:GB/T 42339—2023,4.3.9,有修改]
3.3
风 险 评 价 risk evaluation
在风险识别和风险计量的基础上,结合其他因素对风险发生的概率、损失程度进行全面考虑,评估
发生风险的可能性及其危害程度,并与公认的安全指标相比较,以衡量风险的程度,并决定是否需要采
取相应措施的过程。
[来源:GB/T 42339—2023,4.3.14]
3.4
风险监测 risk monitoring
跟踪已识别风险的发展变化情况、风险产生的条件和导致的结果变化,根据风险的变化情况及时调
GB/T 42929—2023
整风险应对计划,对已发生的风险及其产生的遗留风险和新增风险进行识别和分析。
[来源:GB/T 42339—2023,4.3.15]
3.5
风 险 处 置 risk treatment
风险分析与评价后对风险进行的降低风险、转移风险、规避风险等一系列处理活动。
3.6
风险防控规则 risk prevention and control rule
按照一定的业务逻辑制定的风险事件判定指标。
3.7
风险防控模型 risk prevention and control model
为描述、评价风险定义的一组特性及特性间的关系。
注1:采用风险防控模型的方式实现风险的分析与识别,无须单独针对风险类型或特征制定相应的规则,通过模型
的自反馈特性不断完善对风险判定的准确度。
注2:在风险分析和识别过程中,风险防控规则和风险防控模型通常组合使用。
3.8
智能风险防控 intelligent risk prevention and
control
在传统风险防控基础上,基于大数据计算能力,结合机器学习、人工智能、规则与模型等技术进行的
风险控制。
4 互联网金融业务与风险概述
在互联网支付、互联网贷款、互联网基金销售、互联网保险、互联网信托等互联网金融业务中,风险
防控的核心是业务场景的安全风险,属于 GB/T 41462
金融风险分类中的操作风险。例如,在用户注
册、用户登录、账户开户、资金交易、活动营销、信贷申请、信贷智能审批、内容发布等环节均可能面临风
险。常见的互联网金融典型业务及风险见附录 A, 相关场景风险包括但不限于:
a) 交易场景:账户盗用、洗钱套现、涉赌涉诈、虚假开户等;
b)
营销场景:垃圾注册、渠道刷量、代下单套利、刷单套现、薅羊毛、恶意占库存等;
c) 信贷场景:伪冒身份、虚假身份、中介代办、团伙欺诈、信用伪造等。
根据不同的主体对象,需要从交易维度、账户维度、商户维度、客户维度设计并实施风险防控策
略,建立"点、线、面、体"的跨场景、跨渠道的全生命周期风险防控体系。
5 智能风险防控技术框架
互联网金融智能风险防控的目标是防控互联网金融业务风险。互联网金融智能风险防控能基于业
务场景等上下文信息动态,智能地选择、使用和优化风险控制策略,通过智能风险防控系统来实现风险
防控目标。智能风险防控系统主要包含以下四个部分,其技术框架见图1。
a)
智能风险防控功能,是在风险监测、风险识别与分析、风险评价和风险处置的风险防控核心流
程中的风险防控功能实现。
b)
智能风险防控技术,通过风险防控规则与模型、智能分析与处理为核心流程提供判定规则和动
态调整等能力支撑。
c)
智能风险防控系统安全,保障其自身的基础安全、应用安全、数据安全,支撑智能风险防控
系统。
d)
智能风险防控系统运行,在日常运行和应急响应中确保智能风险防控持续高效运行。
GB/T 42929—2023
图 1 互联网金融智能风险防控技术框架
6 智能风险防控功能
6.1 概述
风险防控各环节核心功能如下:
a)
风险监测:对接互联网金融业务渠道,实现业务风险监控场景接入,收集并转发互联网金融业
务的上下文信息至风险识别与分析模块;
b)
风险识别与分析:接收业务信息后,基于风险防控规则与模型提供的支撑,结合智能分析与处
理方法,对风险控制对象的上下文信息进行识别与分析,向风险评价模块输出风险识别与分析
结果;
c)
风险评价:对输入结果信息进行判定,结合智能分析与处理能力,可基于历史数据和场景信息
进行动态的判定,量化评级风险大小,为风险处置提供决策依据;
d)
风险处置:根据风险评价结果,结合智能分析与处理能力,对不同业务、不同场景下量化后的风
险进行处置,给予相应的响应措施。
6.2 风险监测
风险监测主要技术包括:
a)
应覆盖典型互联网金融业务流程,包括用户注册、绑卡、存管、充值、支付等业务流程;
b)
应根据互联网金融业务流程要素设置风险监测对象,业务流程要素包括交互方、操作过程、操
作时间、操作地点、操作结果、业务数据等;
c)
应同时具备自动化监测功能和人工监测能力,并根据业务的重要程度和业务量大小进行合理
选择;
d)
应具备对业务相关数据的监测能力,包括支付信息、账户信息、身份信息、交易信息、验证手段、
设备信息、社交关系等;
e) 监测结果应实时传递到风险识别与分析功能模块;
f) 应具备对接处理外部数据用于风险监测的能力;
g) 监测要求涉及银行业应用系统的,可参考 GB/T 40473.2—2021
中联机监控和批量监控相关
GB/T 42929—2023
要求;
h)
各机构应根据风险偏好制定风险监测覆盖率和误判率指标,建议风险监测覆盖率不低于
80%,误判率不高于10%;
i)
监测结果应包括监测对象价值评估、事件类型、事件的发生频度、威胁来源与类型等内容。
6.3 风险识别与分析
6.3.1 风险识别
风险识别主要技术包括:
a)
应支持信息真实性(如姓名、证件号、手机号、银行卡号等是否真实)和信息一致性(如姓名、证
件号、手机号、银行卡号等信息是否对应)的信息标识风险识别;
b)
应支持对账户盗用、洗钱套现、涉赌涉诈、虚假开户、垃圾注册、渠道刷量、代下单套利、刷单套
现、薅羊毛、恶意占库存、伪冒身份、虚假身份、中介代办、团伙欺诈、信用伪造等风险的识别;
c) 应采用层次化的技术方法进行风险识别;
d) 应具备快速识别层实现对高发风险的快速识别;
e) 宜支持标识技术,从设备、客户、账户等多维度对风险进行识别;
f) 宜支持风险识别过程可追溯、可审计;
g)
宜支持机器学习方式实现对风险的多维度、综合分析与识别,用于风险防控的机器学习技术见
附录 B;
h) 宜支持风险离线仿真、风险可视化等运营管理功能;
i) 宜具备能够识别潜在风险的异常检测功能;
j) 宜具备基于历史数据构建时序类风险特征变量、进行风险识别的能力。
6.3.2 风险分析
6.3.2.1 在线分析
在线分析包括在线实时分析、在线准实时分析两种。
a) 在线实时分析
在线实时分析主要针对安全威胁较高、计算资源需求较少、实时性要求较高的风险,分析过程
为在线业务流程的必要步骤,分析结果决定所执行的即时业务流程分支。主要技术包括:
-
应至少支持黑白名单过滤的风险分析;
-
应支持风险分析规则的动态扩展;
-
应支持风险分析过程可再现、可审计和可解释;
-
宜支持使用模型进行风险分析;
-
宜支持画像方式进行风险分析。
b) 在线准实时分析
在线准实时分析主要针对安全威胁较高、计算资源需求较多、实时性要求较低的风险,分析过
程不占用业务耗时,分析结果间接影响该笔业务流程走向。主要技术包括:
-
应支持黑名单、白名单、风险列表等分析与过滤方法支撑数据的实时变更;
-
应支持风险分析过程可再现、可审计和可解释;
-
宜支持风险分析规则与模型的自动学习与更新;
-
宜支持使用模型进