(支持向量机)SVM

SVM的几点

1.SVM的思想

SVM的思想可以表达为:SVM试图寻找一个超平面来对样本进行分割,把样本中的正例和反例用超平面分开,但是不是很敷衍地简单的分开,而是尽最大的努力使正例和反例之间的间隔最大,即正例和反例的支持向量距离超平面距离最大。如下图
这里写图片描述
为了最大化这个距离,问题化为:
这里写图片描述
(一)关于拉格朗日乘子法
这里写图片描述
这里写图片描述
(二)关于KKT条件
这里写图片描述

2.SVM优化对偶问题

需要优化的是:
这里写图片描述
引入拉格朗日乘子,我们就可以得到以下拉格朗日函数:
这里写图片描述
分别对w和b进行求偏导,得到:
这里写图片描述
再代入拉格朗日函数:
这里写图片描述
最后得到分离超平面和分类决策函数
这里写图片描述

3.加入松弛变量

示例:
这里写图片描述
约束条件为:
这里写图片描述
在目标函数里面增加一个惩罚项,新的模型就变成为:
这里写图片描述
引入拉格朗日乘子并分别求导:
这里写图片描述
带松弛变量的优化函数以及约束条件为:
这里写图片描述

4.核函数

著名的cover定理:将复杂的模式分类问题非线性地投射到高维空间将比投射到低维空间更可能是线性可分的。

可以把的原始样本点通过一个变换,变换到另一个特征空间,在这个特征空间上是线性可分的,那么SVM就可以工作。也就是说,对于不可分的数据,现在要做两个工作:

1)首先使用一个非线性映射Φ(x)将全部原始数据x变换到另一个特征空间,在这个空间中,样本变得线性可分了;

2)然后在特征空间中使用SVM进行学习分类。

常用的核函数为高斯核函数:
这里写图片描述

5.SMO算法

大致步骤:
这里写图片描述
优化目标,并且满足KKT条件:
这里写图片描述
并且满足条件:
这里写图片描述
得到α1和α2的关系:
这里写图片描述
根据上面的α2的范围,求解它的值,证明为:
这里写图片描述
计算出α1:
这里写图片描述
由α1和α2计算出 w 和 b :
这里写图片描述

Python实现SVM

import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers

def linear_kernel(x1, x2):
    return np.dot(x1, x2)   # 矩阵乘法

def polynomial_kernel(x, y, p=3):
    return (1 + np.dot(x, y)) ** p

def gaussian_kernel(x, y, sigma=5.0):
    return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2)))

class SVM(object):

def __init__(self, kernel=linear_kernel, C=None):
    self.kernel = kernel
    self.C = C
    if self.C is not None: self.C = float(self.C)

def fit(self, X, y):
    n_samples, n_features = X.shape

    # Gram matrix
    K = np.zeros((n_samples, n_samples))
    for i in range(n_samples):
        for j in range(n_samples):
            K[i,j] = self.kernel(X[i], X[j])

    P = cvxopt.matrix(np.outer(y,y) * K)
    q = cvxopt.matrix(np.ones(n_samples) * -1)
    A = cvxopt.matrix(y, (1,n_samples))
    b = cvxopt.matrix(0.0)

    if self.C is None:
        G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
        h = cvxopt.matrix(np.zeros(n_samples))
    else:
        tmp1 = np.diag(np.ones(n_samples) * -1)
        tmp2 = np.identity(n_samples)
        G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
        tmp1 = np.zeros(n_samples)
        tmp2 = np.ones(n_samples) * self.C
        h = cvxopt.matrix(np.hstack((tmp1, tmp2)))

    # solve QP problem
    solution = cvxopt.solvers.qp(P, q, G, h, A, b)
    # Lagrange multipliers
    '''
     数组的flatten和ravel方法将数组变为一个一维向量(铺平数组)。
     flatten方法总是返回一个拷贝后的副本,
     而ravel方法只有当有必要时才返回一个拷贝后的副本(所以该方法要快得多,尤其是在大数组上进行操作时)
   '''
    a = np.ravel(solution['x'])
    # Support vectors have non zero lagrange multipliers
    '''
    这里a>1e-5就将其视为非零
    '''
    sv = a > 1e-5     # return a list with bool values
    ind = np.arange(len(a))[sv]  # sv's index
    self.a = a[sv]
    self.sv = X[sv]  # sv's data
    self.sv_y = y[sv]  # sv's labels
    print("%d support vectors out of %d points" % (len(self.a), n_samples))

    # Intercept
    '''
    这里相当于对所有的支持向量求得的b取平均值
    '''
    self.b = 0
    for n in range(len(self.a)):
        self.b += self.sv_y[n]
        self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv])
    self.b /= len(self.a)

    # Weight vector
    if self.kernel == linear_kernel:
        self.w = np.zeros(n_features)
        for n in range(len(self.a)):
            # linear_kernel相当于在原空间,故计算w不用映射到feature space
            self.w += self.a[n] * self.sv_y[n] * self.sv[n]
    else:
        self.w = None

def project(self, X):
    # w有值,即kernel function 是 linear_kernel,直接计算即可
    if self.w is not None:
        return np.dot(X, self.w) + self.b
    # w is None --> 不是linear_kernel,w要重新计算
    # 这里没有去计算新的w(非线性情况不用计算w),直接用kernel matrix计算预测结果
    else:
        y_predict = np.zeros(len(X))
        for i in range(len(X)):
            s = 0
            for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
                s += a * sv_y * self.kernel(X[i], sv)
            y_predict[i] = s
        return y_predict + self.b

def predict(self, X):
    return np.sign(self.project(X))

if __name__ == "__main__":
    import pylab as pl

def gen_lin_separable_data():
    # generate training data in the 2-d case
    mean1 = np.array([0, 2])
    mean2 = np.array([2, 0])
    cov = np.array([[0.8, 0.6], [0.6, 0.8]])
    X1 = np.random.multivariate_normal(mean1, cov, 100)
    y1 = np.ones(len(X1))
    X2 = np.random.multivariate_normal(mean2, cov, 100)
    y2 = np.ones(len(X2)) * -1
    return X1, y1, X2, y2

def gen_non_lin_separable_data():
    mean1 = [-1, 2]
    mean2 = [1, -1]
    mean3 = [4, -4]
    mean4 = [-4, 4]
    cov = [[1.0,0.8], [0.8, 1.0]]
    X1 = np.random.multivariate_normal(mean1, cov, 50)
    X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))
    y1 = np.ones(len(X1))
    X2 = np.random.multivariate_normal(mean2, cov, 50)
    X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))
    y2 = np.ones(len(X2)) * -1
    return X1, y1, X2, y2

def gen_lin_separable_overlap_data():
    # generate training data in the 2-d case
    mean1 = np.array([0, 2])
    mean2 = np.array([2, 0])
    cov = np.array([[1.5, 1.0], [1.0, 1.5]])
    X1 = np.random.multivariate_normal(mean1, cov, 100)
    y1 = np.ones(len(X1))
    X2 = np.random.multivariate_normal(mean2, cov, 100)
    y2 = np.ones(len(X2)) * -1
    return X1, y1, X2, y2

def split_train(X1, y1, X2, y2):
    X1_train = X1[:90]
    y1_train = y1[:90]
    X2_train = X2[:90]
    y2_train = y2[:90]
    X_train = np.vstack((X1_train, X2_train))
    y_train = np.hstack((y1_train, y2_train))
    return X_train, y_train

def split_test(X1, y1, X2, y2):
    X1_test = X1[90:]
    y1_test = y1[90:]
    X2_test = X2[90:]
    y2_test = y2[90:]
    X_test = np.vstack((X1_test, X2_test))
    y_test = np.hstack((y1_test, y2_test))
    return X_test, y_test

# 仅仅在Linears使用此函数作图,即w存在时
def plot_margin(X1_train, X2_train, clf):
    def f(x, w, b, c=0):
        # given x, return y such that [x,y] in on the line
        # w.x + b = c
        return (-w[0] * x - b + c) / w[1]

    pl.plot(X1_train[:,0], X1_train[:,1], "ro")
    pl.plot(X2_train[:,0], X2_train[:,1], "bo")
    pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g")

    # w.x + b = 0
    a0 = -4; a1 = f(a0, clf.w, clf.b)
    b0 = 4; b1 = f(b0, clf.w, clf.b)
    pl.plot([a0,b0], [a1,b1], "k")

    # w.x + b = 1
    a0 = -4; a1 = f(a0, clf.w, clf.b, 1)
    b0 = 4; b1 = f(b0, clf.w, clf.b, 1)
    pl.plot([a0,b0], [a1,b1], "k--")

    # w.x + b = -1
    a0 = -4; a1 = f(a0, clf.w, clf.b, -1)
    b0 = 4; b1 = f(b0, clf.w, clf.b, -1)
    pl.plot([a0,b0], [a1,b1], "k--")

    pl.axis("tight")
    pl.show()

def plot_contour(X1_train, X2_train, clf):
    # 作training sample数据点的图
    pl.plot(X1_train[:,0], X1_train[:,1], "ro")
    pl.plot(X2_train[:,0], X2_train[:,1], "bo")
    # 做support vectors 的图
    pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g")
    X1, X2 = np.meshgrid(np.linspace(-6,6,50), np.linspace(-6,6,50))
    X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])
    Z = clf.project(X).reshape(X1.shape)
    # pl.contour做等值线图
    pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower')
    pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower')
    pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower')

    pl.axis("tight")
    pl.show()

def test_linear():
    X1, y1, X2, y2 = gen_lin_separable_data()
    X_train, y_train = split_train(X1, y1, X2, y2)
    X_test, y_test = split_test(X1, y1, X2, y2)

    clf = SVM()
    clf.fit(X_train, y_train)

    y_predict = clf.predict(X_test)
    correct = np.sum(y_predict == y_test)
    print("%d out of %d predictions correct" % (correct, len(y_predict)))

    plot_margin(X_train[y_train==1], X_train[y_train==-1], clf)

def test_non_linear():
    X1, y1, X2, y2 = gen_non_lin_separable_data()
    X_train, y_train = split_train(X1, y1, X2, y2)
    X_test, y_test = split_test(X1, y1, X2, y2)

    clf = SVM(gaussian_kernel)
    clf.fit(X_train, y_train)

    y_predict = clf.predict(X_test)
    correct = np.sum(y_predict == y_test)
    print("%d out of %d predictions correct" % (correct, len(y_predict)))

    plot_contour(X_train[y_train==1], X_train[y_train==-1], clf)

def test_soft():
    X1, y1, X2, y2 = gen_lin_separable_overlap_data()
    X_train, y_train = split_train(X1, y1, X2, y2)
    X_test, y_test = split_test(X1, y1, X2, y2)

    clf = SVM(C=0.1)
    clf.fit(X_train, y_train)

    y_predict = clf.predict(X_test)
    correct = np.sum(y_predict == y_test)
    print("%d out of %d predictions correct" % (correct, len(y_predict)))

    plot_contour(X_train[y_train==1], X_train[y_train==-1], clf)

# test_soft()
# test_linear()
test_non_linear()

PS(cvxopt安装3步)

1.卸载电脑里原有的numpy
2.下载并安装cvxopt(https://www.lfd.uci.edu/~gohlke/pythonlibs/#cvxopt)
3.下载并安装numpy(https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值