计算理论Computing Theory_Chapter01

本文介绍了计算理论的基础概念,包括集合的元素、并集、交集、差集等,以及关系的定义和性质,如有序对、笛卡尔积和二元关系。此外,还探讨了函数、特殊类型的二元关系,如等价关系和偏序/全序,并讲解了数学归纳法等证明技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Set

 

elements/members
singleton: (one element)
empty set
proper set
union
intersection
difference:

Idempotency, Commutativity, Associativity, Distributivity, Absorption, DeMorgan's laws:

disjoint:

 

Why we need sets of sets?

to represent power sets -- all the subsets of a set, as well as partition.

 

Intersections and Unions of more than two sets:

If S is any collection of sets, we write  for the set whose elements are the elements of all the sets in S.

eg. S = { {a,b}, {b,c}, {c,b,d} } -->  = {a,b,c,d}, = {b}.

power set: The collection of all subsets of a set A is itself a set, called the power set of A and denoted 

parition:

 

 

 

 

Relations

A relation is itself a set.

The objects that belong to the relation are, in essence, the combinations of individuals for which that relation holds in the intuitive sense. (属于关系的对象在本质上是直观上使得关系成立的个体的组合)

So the less-than relation is the set of all pairs of numbers such that the first number is less than the second.

 

basis

ordered pair (to distinguish the two parts or objects, namely components of the pair):

(a,b)   a==b is valid

Cartesian product    is also a set:

binary relation    a subset of Cartesian product:

The less-than relation is the subset of .

 

generalizations

ordered n-tuple   <---   ordered 2-tuple == ordered pair

(b1, b2, ..., bm) == (a1, a2, ..., an)  if and only if  m == n && bi == ai for i = 1, 2, ..., n.

n-fold Cartesian product, set of ordered n-tuples   <---   (2-fold) Cartesian product, set of ordered pairs

n-ary relation, subset of n-fold Cartesian product   <---   (binary) relation, subset of 2-fold Cartesian product

 

 

 

 

 

Functions

function:

A function is an association of each object of one kind with a unique object of another kind.
A function from a set A to a set B is a binary relation R on A and B with the following property:

 

f is function from A to

 

basis

domain: A

image:

a is an element that belongs to A,   (a,b) belongs to f,    b == f(a) is an image of a under f;

A' is a subset of A,   (a',b) belongs to f, where a' belongs to A'b == f[A'] is an image of A' under f;

range:  the range of f is the image of its domain A.<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值