1、信息熵
信息论中的信息量和信息熵。
信息量:
信息量是对信息的度量,就跟温度的度量是摄氏度一样,信息的大小跟随机事件的概率有关。
香农定义的一个事件的信息信息量为:I(X) = log2(1/p) 其中p为事件X发生的概率
信息熵:Entropy
一个随机变量 X 可以代表n个随机事件,对应的随机变为X=xi,
那么熵的定义就是 X的加权信息量。
H(x) = p(x1)I(x1)+…+p(xn)I(x1)
= p(x1)log2(1/p(x1)) +…..+p(xn)log2(1/p(xn))
= -p(x1)log2(p(x1)) - ……..-p(xn)log2(p(xn))
其中p(xi)代表xi发生的概率
例如有32个足球队比赛,每一个队的实力相当,那么每一个对胜出的概率都是1/32
那么 要猜对哪个足球队胜出 非常困难,
这个时候的熵H(x) = 32 * (1/32)log(1/(1/32)) = 5
熵也可以作为一个系统的混乱程度的标准
试想如果32个队中有一个是ac米兰,另外31个对是北邮计算机1班队,2班,…31班
那么几乎只有一个可能 ac米兰胜利的概率是100%,其他的都是0%,这个系统的熵
就是 1*log(1/1) = 0. 这个系统其实是有序的,熵很小,而前面熵为5 系统处于无序状态。
2、基尼不纯度
基尼不纯度的大概意思是 一个随机事件变成它的对立事件的概率
例如 一个随机事件X ,P(X=0) = 0.5 ,P(X=1)=0.5
那么基尼不纯度就为 P(X=0)*(1 - P(X=0)) + P(X=1)*(1 - P(X=1)) = 0.5
一个随机事件Y ,P(Y=0) = 0.1 ,P(Y=1)=0.9
那么基尼不纯度就为P(Y=0)*(1 - P(Y=0)) + P(Y=1)*(1 - P(Y=1)) = 0.18
很明显 X比Y更混乱,因为两个都为0.5 很难判断哪个发生。而Y就确定得多,**Y=1**发生的概率很 大 , 而基尼不纯度也就越小。
所以基尼不纯度也可以作为 衡量系统混乱程度的 标准