在caffe中固定某些网络参数,只训练某些层

实现的关键变量是:propagate_down 含义:表示当前层的梯度是否向前传播
比如有4个全连接层A->B->C->D
    a. 你希望C层的参数不会改变,C前面的AB层的参数也不会改变,这种情况也就是D层的梯度不往前反向传播到D层的输入blob(也就是C层的输出blob 没有得到梯度),你可以通过设置D层的propagate_down为false来做到。
         propagate_down的数量与输入blob的数量相同,假如你某个层有2个输入blob,那么你应该在该layer的Param里面写上两行:
         propagate_down : 0    # 第1个输入blob不会得到反向传播的梯度
         propagate_down : 0    # 第2个输入blob不会得到反向传播的梯度
         这样的话,你这个layer的梯度就不会反向传播啦,前面的所有layer的参数也就不会改变了
    b. 你希望C层的参数不会改变,但是C前面的AB层的参数会改变,这种情况,只是固定了C层的参数,C层得到的梯度依然会反向传播给前面的B层。只需要将对应的参数blob的学习率调整为0:
在layer里面加上param { lr_mult: 0 }就可以了,比如全连接层里面:
layer {
    type: "InnerProduct"
    param { # 对应第1个参数blob的配置,也就是全连接层的参数矩阵的配置
         lr_mult: 0 # 学习率为0,其他参数可以看caffe.proto里面的ParamSpec这个类型
    }
    param { # 对应第2个参数blob的配置,也就是全连接层的偏置项的配置
        lr_mult: 0 # 学习率为0
    }

}

https://blog.csdn.net/leibaojiangjun1/article/details/53635482/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值