机器学习解决问题的思路:
业务需求,数据,特征工程(分类等依据)
获取模型:
1.定义模型(一个数学公式,由问题来决定的)
2.定义损失函数
(因为预测出来的结果有偏差,无法得到精确解),损失函数定义偏差的大小,得到近似解
3.优化算法
求函数的极小值,使它与正确结果能最接近.
评估模型:
1交叉验证
2效果评估
机器学习解决问题的思路:
业务需求,数据,特征工程(分类等依据)
获取模型:
1.定义模型(一个数学公式,由问题来决定的)
2.定义损失函数
(因为预测出来的结果有偏差,无法得到精确解),损失函数定义偏差的大小,得到近似解
3.优化算法
求函数的极小值,使它与正确结果能最接近.
评估模型:
1交叉验证
2效果评估