人脸识别损失函数梳理与分析
补充:
1.facenet-TripletLoss
- 注意点:
- 样本对选择: 在线生成triplet对,为了使mini-batch中生成的triplet合理,生成mini-batch的时候,保证每个mini-batch中每个人平均有40张图片。然后随机加一些反例进去。在生成triplet的时候,找出所有的anchor-pos对,然后对每个anchor-pos对找出其hard neg样本。这里,并不是严格的去找hard的anchor-pos对,找出所有的anchor-pos对训练的收敛速度也很快。
- batchsize:我将batchsize设置为30(论文是1800必须是3的倍数),embeddings_shape为128.则每次输入的anchor为(10,128)的数据。P,N也一样。
计算loss时,由于A和P的距离小于A和N的距离,所以当alpha=0.2时
2.arcface loss
特征归一化的原因:1.提到的抑制噪声影响2.加速训练3.尺度无关、长度无关……当归一化/标准化方法背后的物理意义和几何含义与当前问题的需要相契合时,其对解决该问题就有正向作用