人脸识别损失函数梳理与分析/相关方法整理

人脸识别损失函数梳理与分析

补充:

1.facenet-TripletLoss

  • 注意点:
    • 样本对选择: 在线生成triplet对,为了使mini-batch中生成的triplet合理,生成mini-batch的时候,保证每个mini-batch中每个人平均有40张图片。然后随机加一些反例进去。在生成triplet的时候,找出所有的anchor-pos对,然后对每个anchor-pos对找出其hard neg样本。这里,并不是严格的去找hard的anchor-pos对,找出所有的anchor-pos对训练的收敛速度也很快。
  • batchsize:我将batchsize设置为30(论文是1800必须是3的倍数),embeddings_shape为128.则每次输入的anchor为(10,128)的数据。P,N也一样。
    计算loss时,由于A和P的距离小于A和N的距离,所以当alpha=0.2时
    在这里插入图片描述

2.arcface loss

特征归一化的原因:1.提到的抑制噪声影响2.加速训练3.尺度无关、长度无关……当归一化/标准化方法背后的物理意义和几何含义与当前问题的需要相契合时,其对解决该问题就有正向作用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值