线性模型第2讲:岭回归与分类

本文介绍了岭回归的概念,它是最小二乘估计的拓展,通过加入正则化项增强对多重共线性的处理。还讨论了Python中实现岭回归的类,并展示了如何用于分类问题。此外,文章探讨了设置正则参数α的重要性,以及它如何影响回归系数。通过图形展示,解释了随着α增大,系数逐渐趋向零的过程。
摘要由CSDN通过智能技术生成

论文合作、课题指导请联系QQ2279055353

岭回归

岭回归(Ridge Regression), 在最小二乘估计问题的基础上,向离差平方和增加了一个L2范数的惩罚项,即,
min ⁡ w ∥ X w − y ∥ 2 2 + α ∥ w ∥ 2 2 \mathop{\min}\limits_{w} \| Xw-y\|_2^2+\alpha\|w\|_2^2 wminXwy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值