作者简介: 本文作者系大学统计学专业教师,多年从事统计学的教学科研工作,在随机过程、统计推 断、机器学习领域有深厚的理论积累与应用实践。个人主页
1. 问题描述
据统计,新型冠状病毒肺炎(COVID-19)有显著的发病率,而且致死率是普通流感的五倍。从肺部X光图像看,新冠肺炎非常类似其它肺炎,例如,导致肺部发炎、积水。这增加了从胸片图像诊断新冠肺炎的难度。当前,新冠肺炎的诊断主要通过病毒学的聚合酶链式反应检测遗传物质,或肺部X光图像检查。分子试验结果需要几个小时甚至数天时间,而胸片图像只需要几分钟的时间。本研究将识别与定位X光图像的新冠肺炎异常。这是一个目标检测与分类问题。
2. 数据介绍
本研究的数据集由6,334张DICOM格式的胸部X光图像组成。对于每一张检验图像,你将开发计算机视觉算法预测一个边界框和标签。如果预测结果没有发现异常,将用none 1 0 0 1 1表示。
3. YOLOv5算法
YOLO是You only look once的缩写,它是一个目标检测算法,将检测图像分割成一个网格系统,网格里的每个细胞对应图像的一部分。YOLO将对象检测重新定义为一个回归问题。它将单个卷积神经网络(CNN)应用于整个图像,将图像分成网格,并预测每个网格的类概率和边界框。YOLO非常快。由于检测问题是一个回归问题,所以不需要复杂的管道。它比R-CNN快1000倍,比Fast R-CNN快100倍。YOLOv5是YOLO最新的版本。

3.1 导入并设置
# Download YOLOv5
!git clone https://github.com/ultralytics/yolov5 # clone repo
%cd yolov5
# Install dependencies
%pip install -qr requirements.txt # install dependencies
%cd ../
import torch
print(f"Setup complete. Using torch {
torch.__version__} ({
torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
# Install W&B
!pip install -q --upgrade wandb
# Login
import wandb
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
# I have saved my API token with "wandb_api" as Label.
# If you use some other Label make sure to change the same below.
wandb_api = user_secrets.get_secret("wandb_api")
wandb.login(key=wandb_api)
# Necessary/extra dependencies.
import os
import gc
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from shutil import copyfile
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
#customize iPython writefile so we can write variables
from IPython.core.magic import register_line_cell_magic
@register_line_cell_magic
def writetemplate(line, cell):
with open(line, 'w') as f:
f.write(cell.format(**globals()))
3.2 导入数据
# Load image level csv file
df = pd.read_csv('input/siim-covid19-detection/train_image_level.csv')
# Modify values in the id column
df['id'] = df.apply(lambda row: row

本文介绍了使用YOLOv5算法解决从胸片图像中识别和定位新冠肺炎异常的问题。该研究涉及6,334张胸部X光图像,通过目标检测与分类,旨在提高诊断效率。YOLOv5是一种快速的目标检测模型,能够将图像分割并预测异常区域。"
79690783,7477482,深度学习中的Python操作详解,"['深度学习', 'TensorFlow', '数据处理']
最低0.47元/天 解锁文章
948

被折叠的 条评论
为什么被折叠?



