[spark]总结spark ML机器学习库(pyspark.ml)

本文深入探讨了pyspark.ml库,包括特征处理、模型构建和参数调优。重点介绍了如何使用pyspark.ml.feature进行特征工程,利用pyspark.ml模型进行机器学习任务,并详细讲解了pyspark.ml.tuning模块的参数网格搜索方法,如CrossValidator和TrainValidationSplit,用于选择最佳模型参数。
摘要由CSDN通过智能技术生成

目录

一、pyspark.ml.feature特征处理

二、pyspark.ml模型

三、pyspark.ml.tuning参数遍历


一、pyspark.ml.feature特征处理

  方法 描述 功能
连续特征离散化 Binarizer 将连续值划分为二元离散数值 连续特征离散化
Bucketizer 将连续值划分为多元离散数值 连续特征离散化
QuantileDiscretizer 分位数离散化,将连续型特征转换为分级类别特征,每个类别的元素个数大致相等 连续特征离散化
特征选择 ChiSqSelector 根据卡方检验,选取类别标签主要依赖的特征 特征选择
PCA 主成分分析,找出特征中最重要的特征,进行降维 特征提取、数据降维
VectorSlicer 从原来的特征向量中切割一部分,形成新的特征向量 特征选择
特征归一化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值