关于深度学习训练周期,训练时间表,训练时刻表,训练策略的说明——Training Schedules,Lr schd,1x,2x,mmDetection和Detectron中训练周期次数对比

记录一下关于深度学习常用的训练策略说明:

ID:wonyoungsen

通常的框架或者论文都会提到训练周期关于1x和2x,她的来历最初是从Detectron来的,在她的MODEL_ZOO.md介绍里面有关于Training Schedules的说明,可以去详细看一下。

  • 1x 策略表示:在总batch size为16时,初始学习率为0.02,在6万轮和8万轮后学习率分别下降10倍,最终训练9万轮。
  • 2x 策略为1x策略的两倍,同时学习率调整位置也为1x的两倍。

其中,mmDetection采用与Detectron相同的训练时间表。1x表示12个epoch,而2x表示24个epoch,这比Detectron的迭代次数略少,并且可以忽略不计。
在coco2014和2017中数据集中总共118287张图片,所以Detectron计算下来大概是12.17个epoch。

/---------------------------------------------------------------------------
三木每森
wonyoungsen

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值