51nod_1265_四点共面

51nod_1265_四点共面

判断四点共面
题目链接

题目描述
	给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。
Input
	第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
	第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。
Output
	输出共T行,如果共面输出"Yes",否则输出"No"。
Input示例
	1
	1 2 0
	2 3 0
	4 0 0
	0 0 0
Output示例
	Yes
解题思路
	四点构成首尾相连的三个向量,三个向量构成一个3*3行列式,结果为零共面,反之不共面
AC代码

模板

#include<iostream>
#include<string.h>
#include<algorithm>
#include<string>
using namespace std;
struct Point
{
	int x, y, z;
} p[5];
int main()
{
	int t;
	cin>>t;
	while (t--)
	{
		for (int i = 0; i<4; i++)
			cin>>p[i].x>>p[i].y>>p[i].z;
		Point s1, s2, s3;
		s1.x = p[1].x - p[0].x;
		s1.y = p[1].y - p[0].y;
		s1.z = p[1].z - p[0].z;
		s2.x = p[2].x - p[0].x;
		s2.y = p[2].y - p[0].y;
		s2.z = p[2].z - p[0].z;
		s3.x = p[3].x - p[0].x;
		s3.y = p[3].y - p[0].y;
		s3.z = p[3].z - p[0].z;
		int ans;
		ans = s1.x*s2.y*s3.z + s1.y*s2.z*s3.x + s1.z*s2.x*s3.y - s1.z*s2.y*s3.x - s1.x*s2.z*s3.y - s1.y*s2.x*s3.z;
		if (ans == 0)
			cout<<"Yes\n";
		else
			cout<<"No\n";
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值