51nod_1265_四点共面
判断四点共面
题目链接
题目描述
给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。
Output
输出共T行,如果共面输出"Yes",否则输出"No"。
Input示例
1
1 2 0
2 3 0
4 0 0
0 0 0
Output示例
Yes
解题思路
四点构成首尾相连的三个向量,三个向量构成一个3*3行列式,结果为零共面,反之不共面
AC代码
#include<iostream>
#include<string.h>
#include<algorithm>
#include<string>
using namespace std;
struct Point
{
int x, y, z;
} p[5];
int main()
{
int t;
cin>>t;
while (t--)
{
for (int i = 0; i<4; i++)
cin>>p[i].x>>p[i].y>>p[i].z;
Point s1, s2, s3;
s1.x = p[1].x - p[0].x;
s1.y = p[1].y - p[0].y;
s1.z = p[1].z - p[0].z;
s2.x = p[2].x - p[0].x;
s2.y = p[2].y - p[0].y;
s2.z = p[2].z - p[0].z;
s3.x = p[3].x - p[0].x;
s3.y = p[3].y - p[0].y;
s3.z = p[3].z - p[0].z;
int ans;
ans = s1.x*s2.y*s3.z + s1.y*s2.z*s3.x + s1.z*s2.x*s3.y - s1.z*s2.y*s3.x - s1.x*s2.z*s3.y - s1.y*s2.x*s3.z;
if (ans == 0)
cout<<"Yes\n";
else
cout<<"No\n";
}
return 0;
}