Hierarchical Clustering with Hard-batch Triplet Loss for Person Re-identification
Contribution :
- 提出了无监督重识别方法 HCT ;
- 在每次聚类迭代后使用 PK sampling ,减少 hard example 的影响 , 减少False Positive 样本;
HCT :
- 使用 euclidean 距离 ;
- 分为四个步骤 : 聚类 – PK 取样 – 微调 – 评估模型性能,并反复迭代直到性能不再提升;
- 使用 hard_batch triplet loss 损失函数;
Conclusion:
作者在 BUC 的基础上提出无监督的重识别方法 HCT, 用 euclidean 距离代替 BUC 中使用的 minmum 距离,解决了 BUC 在 merge 次数过多后性能越来越差的问题;通过 PK sampling 和 hard-batch triplet loss 进行训练,解决了 BUC 难以区分 hard examples 的问题。
作者还通过初始化伪标签并且交替训练提高了伪标签的质量。
2242

被折叠的 条评论
为什么被折叠?



