作者:咫尺小厘米
链接:https://zhuanlan.zhihu.com/p/133268053
本文转载自知乎,作者已授权,未经许可请勿二次转载
语义分割是图像分割中的基本任务,是指对于图像将每个像素都标注上对应的类别,不区分个体。简单地说,我们需要将视觉输入的数据分为不同的语义可解释性类别。若是区分了个体数量,那么就是实例分割。
本文主要总结一些较为经典的语义分割模型,慢慢更新,主要是对U-Net、FCN、SegNet、PSPNet、DeepLab v1/v2/v3/v3+进行要点概括,论文的具体解读、链接和源码在每个小结的卡片中。
U-Net
1.U-Net发表于2015年,用于医学细胞分割
2.编码器-解码器架构,四次下采样(maxpooling),四次上采样(转置卷积),形成了U型结构
3.U-Net最核心的一个思想是特征图的拼接
4.SGD+Momentum,损失函数为交叉熵
5.数据预处理使用了镜像边缘,可以更好细化边界信息
6.数据增加中有一个弹性形变,符合细胞本身的特性
7.可以应对小样本的数据集进行较快、有效地分割,能够泛化到很多应用场景中去
U-Net: Convolutional Networks for Biomedical Image Segmentation论文笔记: https://zhuanlan.zhihu.com/p/98339195
FCN:Fully Convolutional Networks
1.FCN发布于2014年,是语义分割领域全卷积网络的开山之作,U-Net也在其之后
2.其主要思路是将图像分类的网络改良成语义分割的网络,通过将分类器(全连接层)变成上采样层来恢复特征图的尺寸,进行端到端训练
3.分类器变成上采样,这部分思想作者主要的解释是全连接层是一种特殊的卷积
4.选择了AlexNet、GoogLeNet和VGG作为backbone(主干网络),VGG效果最好,但是推理最慢
5.最核心的思想是特征图的融合:假设最后的输出为pool5产生的x,利用转置卷积上采样,放大32倍,得到FCN-32s;将x上采样放大2倍,和pool4产生的特征图直接相加,再上采样放大16倍,得到FCN-16s;将FCN-16s进行上采样放大2倍,与pool3产生的特征图直接相加,在放大8倍,得到FCN-8s。在实验中,FCN-8s的效果最好
6.backbone是分类网络,下采样都是maxpooling,上采样使用的是双线性插值初始化的转置卷积
7.在PASCAL VOC 2012上达到了62.2%的mIoU
Fully Convolutional Networks for Semantic Segmentation论文笔记:https://zhuanlan.zhihu.com/p/113250925
SegNet:A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
1.SegNet发布于2015年,使用编码器-解码器结构
2.其backbone是2个VGG16,去掉全连接层(13层),对应形成编码器-解码器架构
3.最核心的想法是提出了maxpool的索引来上采样的方法,从而免去了学习上采样的需要,在推理阶段节省了内存
4.作者说道这个idea是来自于无监督特征学习。在解码器中重新使用编码器池化时的索引下标有这么几个优点:1. 能改善边缘的情况;2. 减少了模型的参数;3. 这种能容易就能整合到任何的编码器-解码器结构中,只需要稍稍改动
5.文章采用的数据集是CamVid road scene segmentation 和 SUN RGB-D indoor scene segmentation。之所以不用主流的Pascal VOC12,是因为作者认为VOC12的背景太不相同了,所以可能分割起来比较容易
6.总得来说,SegNet的性能比较一般,不如同时期的DeepLab v1,但是因为它只存储特征映射的maxpool索引,所以最推理阶段内存占用少,更为高效
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation论文笔记:https://zhuanlan.zhihu.com/p/113347630
PSPNet:Pyramid Scene Parsing Network
1.PSPNet发布于2017年,CVPR 2017
2.核心idea是提出了金字塔池化模块,模型带有空洞卷积
3.金字塔池化(Pyramid pooling)融合了四个比例的特征,结合多尺寸信息:SPP(AVE效果优于MAX)。最粗糙的 是全局尺度的池化,剩下的层次会将图像分为不同子区域,形成不同区域的信息表示。金字塔池模块中不同level的输出包含比例不同的feature map(比如输入的维度都是 ,有四个层次的金字塔,那么输出的维度则为 )。为了保持全局特征的权重,若如果金字塔的数量为 ,则在每个金字塔级别之后使用 卷积层将上下文表示的维度减小到原先的 。然后直接对feature map进行双线性插值,恢复到输入的长宽上。最后,将不同level的特征拼接起来作为金字塔池化的全局特征。文中给出的金字塔池化模块是一个四级模块,其大小分别为 。
4.其backbone为修改Resnet-101 为 ResNet-103,而且有辅助 loss,上采样是双线性插值
5.性能上PASCAL VOC 2012:85.4%(pre-trained on COCO),82.6%;Cityscape:80.2% (both coarse and fine set)。
PSPNet:Pyramid Scene Parsing Network论文笔记:https://zhuanlan.zhihu.com/p/115004020
DeepLab v1
1.发表于2014年,CVPR2014
2.核心思想是使用空洞卷积扩大感受野,条件随机场细化边界
3.backbone是VGG16,下采样8倍
4.PASCAL VOC 2012达到了71.6%的mIOU
5.v1版本是下采样8倍,在VGG16中是前三个stage上stride为2
Deeplab v1:Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs论文笔记:https://zhuanlan.zhihu.com/p/113573758
DeepLab v2
1.发表于2016年,TPAMI 2017
2.和v1的区别主要是在于多了atrous spatial pyramid pooling(ASPP)
3.流程上是DCNN + Atrous convlution + CRF
4.backbone是VGG16和ResNet-101,下采样8倍(ResNet需要在第二个stage第一个bottleneck中stride为2)
5.PASCAL VOC 2012达到了79.7%的mIOU
6.ASPP是多尺度下融合特征,CRF是进行边界的精确化
DeepLab v2: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs论文笔记:https://zhuanlan.zhihu.com/p/121605775
DeepLab v3
1.CVPR 2017
2.和v2的区别在于ASPP多了image-level feature,没有使用CRF
3.提出了mutil-grid,改进了级联网络的性能
4.PASCAL VOC 2012达到了85.7%的mIOU
5.流程上是端到端训练了,backbone是ResNet-101
6.下采样有8倍和16倍两种,8倍性能更好
7.计算损失时,将输出的上采样,而非是将真实注释下采样
Deeplab v3:Rethinking Atrous Convolution for Semantic Image Segmentation论文笔记:https://zhuanlan.zhihu.com/p/124141514
DeepLab v3+
1.CVPR 2018
2.和v3的区别是多了一个解码器模块,backbone用了Aligned Xception(其中有深度可分解卷积)
3.PASCAL VOC 2012达到了87.8%的mIOU,在JFT预训练的DeepLab v3+在PASCAL VOC 2012上至今领先,达到了89.0%,但是JFT-300M是谷歌的内部数据集,不开源
DeepLab v3+:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation论文笔记:https://zhuanlan.zhihu.com/p/124141514
☆ END ☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 mthler」,每日朋友圈更新一篇高质量博文(无广告)。
↓扫描二维码添加小编↓