链接:https://www.zhihu.com/question/266478287
编辑:深度学习与计算机视觉
声明:仅做学术分享,侵删
作者:EddyLiu
https://www.zhihu.com/question/266478287/answer/587489884
有了基础的《概率/统计》、《线性代数》、《微积分》知识,就可以上手深度学习的算法和实践了。但经过一段时间的工程实践,慢慢觉得大多数时间都用在选模型,调超参,或者是网络结构的排列组合上。深度学习的黑盒特性越来越明显。难道深度学习工程师就当真是数据“炼丹师”吗?
如果,你有了这样的感觉,下面的视频不妨抽时间看看(都需要翻墙):
李宏毅《Machine Learning and having it deep and structured》
不多说,直接看目录吧。
课程地址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html
《Theory 1 - Why Deep Structure》
Can shallow network fit any function
Potential of Deep
Is Deep better than Shallow
《Theory 2 - Optimization》
When Gradient is Zero
Deep Linear Network
Does Deep Network have Local Minima
Geometry of Loss Surfaces (Conjecture)
Geometry of Loss Surfaces (Empirical)
《Theory 3 - Generalization 》
Capability of Generalization
Indicator of Generalization
Sanjeev Arora《The mathematics of machine learning and deep learning》
视频地址:https://www.youtube.com/watch?v=r07Sofj_puQ
这是ICM2018的主题演讲,虽然Sanjeev Arora作为普林斯顿计算机科学的教授,但演讲内容深入浅出,并没有涉及大量的数学公式和推导,这里贴一下提纲:
<img src="https://pic1.zhimg.com/50/v2-d46fb523ed8f3c63757b499e07ba61dd_720w.jpg?source=1940ef5c" data-caption="" data-size="normal" data-rawwidth="1236" data-rawheight="518" class="origin_image zh-lightbox-thumb" width="1236" data-original="https://pic2.zhimg.com/v2-d46fb523ed8f3c63757b499e07ba61dd_r.jpg?source=1940ef5c"/>
小结
这两部分的内容是相互呼应的,可以先看李宏毅老师的课程,然后在看Sanjeev Arora教授的分享总结。
作者:润宁 https://www.zhihu.com/question/266478287/answer/313813956
没必要再读个数学Master了,即使打算做机器学习(包括深度学习)理论方面的研究,数学专业本科学的已经完全够了。如果打算做深度学习,建议读个机器学习方向的Master,同时提高自己的编程能力(比如刷LeetCode)。
作者:Cv大法代码酱
https://www.zhihu.com/question/266478287/answer/2479263874
与机器学习相比,深度学习的大部分内容对数学要求并没有那么高。
如果是以工程应用和非理论的学术研究为目的,主要也就是线性代数的一些运算,各种损失函数,梯度下降法,反向传播算法。
比起机器学习中的支持向量机,EM算法,概率图模型,概率推断,各种采样算法,要容易的多。
用花书要友好一些,在开头几章就用较大的篇幅介绍了数学知识,基本上覆盖了深度学习的主要数学知识点。包括:
线性代数、概率论与信息论、数值计算
大家应该能感觉到,花书的第1部分“应用数学与机器学习基础”和第2部分“深度网络:现代实践”相对容易理解,只要有一些数学基础,都能读懂。问题出在第3部分-深度学习研究:线性因子模型、自编码器、表示学习、深度学习中的结构化概率模型、蒙特卡洛方法、直面配分函数、近似推断、深度生成模型
这几章的数学知识明显增多,而且有很多是大家不熟悉的。又出现了令大家普遍头疼的内容,比如MCMC采样,EM算法:近似推断和变分推断和变分法。
单看描述,很难理解泛函的概念和变分法的原理。
从上面这些内容来看,如果不打好数学基础,想要学好深度学习也是不现实的。
不过,题主毕业后也没有必要进一步去读数学的研究生了,学历不是解决问题的办法,要有学习解决问题的能力。
花书(《深度学习》,人民邮电出版社)分别是目前国内深度学习领域销量最大的教材。大家公认它们的质量是很高,但一个尴尬的现状是:绝大部分人买了这两本书之后并没有怎没看懂,更没有坚持读完!
花书里密集的出现数学概念和公式,对大部分读者来说都是很困难的,尤其是不少数学知识超出了本科“微积分”,“线性代数”,“概率论与数理统计”3门课的范围。见到陌生的数学符号和公式让大家茫然不知所措。
所以我在推荐一个资源--《机器学习的数学》,配合着它去学习,基本上可以扫清你学西瓜书,花书的数学障碍。当你看到数学符号和公式的时候不再会有陌生感,对于这些数学知识如何用到机器学习和深度学习中,也有一个清晰的认识。
这本书用最小的篇幅精准的覆盖了机器学习、深度学习、强化学习所需的核心数学知识。章节结构设计科学合理,不需要的东西,统统不讲,这样可以有效的减小读者的学习成本。
如果你想从事学术研究,也可以打下良好的数学基础。
作者:机器意识
https://www.zhihu.com/question/266478287/answer/1911910013
如果希望做开创性的研究,概率论、线性代数、微积分是不够的,这些数学工具提供不了蓝图,需要去了解一些不那么古老的数学领域,比如近世代数、微分几何、泛函分析等。
打个比方,研究五次方程求根问题,会中学数学是不够的,你需要会伽罗华群和域扩张
工作中很多都是推荐问题,如果了解微分几何,我们可以用纤维丛的概念去抽象这个问题,用户特征空间是基空间,用户特征拼接内容特征合是全空间,但是如何利用微分几何中已知的结论去优化推荐建模,还在探索中,但至少思考的空间更大一些了
☆ END ☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 woshicver」,每日朋友圈更新一篇高质量博文。
↓扫描二维码添加小编↓