侠之大者,为国为民


 

第三次华山论剑,当年的“五绝”仅二人在世,杨过作为欧阳锋义子被称为“西狂”,郭靖作为洪七公的徒弟,被称为“北侠”。一生为了大宋坚守襄阳城,“侠之大者,为国为民”!

ARM和FPGA作为当今最流行的集成电路芯片,为科技发展以及离不开科技的社会各方面的发展做出巨大贡献。

ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。

 ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功 能模块可供生产厂商根据不同用户的要求来配置生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场 占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。

FPGA自然不用多说了。作为专用集成电路(ASIC)领域中的一种半定制电路,FPGA既解决了 定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。可以毫不夸张的讲,FPGA能完成任何数字器件的功能,上至高性能CPU,下至简单的74电 路,都可以用FPGA来实现。

FPGA如同一张白纸或是一堆积木,工程师可以通过传统的原理图输入法,或是硬件描述语言自由的设计一个数字系统。通过软件仿真,我们可以事先验证设计的正确性。在PCB完成以后,还可以利用FPGA的在线修改能力,随时修改设计而不必改动硬件电路。使用FPGA来开发数字电 路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性。FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此工作时需要对片内的RAM 进行编程。用户可以根据不同的配置模式,采用不同的编程方式。加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FPGA进入工 作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用。同一片FPGA,不同的编程数据,可以产生不同的电路功能。因此,FPGA的使用非常灵活。

ARM具有较强的事务管理功能,可以用来跑界面以及应用程序等,其优势主要体现在控制方面。

FPGA用硬件语言来编程,灵活性强,由于能够进行编程、出错、再编程和重复操作,因此可以进行充分的设计开发和验证,当电路有少量改变时,更能突出FPGA的优势,其现场可编程能力可以延长产品在市场上的寿命。

如今,FPGA各大厂家都将ARM内核集成到FPGA内部。特别是ZYNQ系列的推出,让很大一部分人重新学习ARM,也让很大一部分人学习了FPGA。而且ARM-FPGA设计架构,也成为很多公司的开发首选方案。

不论是ARM,还是FPGA,两位大侠都在为科技的进步做着贡献。最终无论是学习ARM或者FPGA,最终我们都不可能单单懂一门技术就可以的,艺多不压身,这或许是作为开发工程师所要不断学习的动力。


版权所有权归卿萃科技,转载请注明出处  

作者:卿萃科技ALIFPGA  

原文地址:卿萃科技FPGA极客空间 微信公众号


 

扫描二维码关注卿萃科技FPGA极客空间



 

 

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值