程序员数学(9)--不等式与不等式组

点此查看全部文字教程、视频教程、源代码

1. 基本概念

  • 不等式:用>或<表示大小关系的式子,叫做不等式,例如x+1>2
  • 不等式的解:使不等式成立的未知数的值,叫做不等式的解,例如x=3是x+1>2的解
  • 不等式的解集:一个含有未知数的不等式的所有的解组成的集合,称为不等式的解集
  • 解不等式:求不等式解集的过程,称为解不等式

注意不等式的解集一般不好用数字来表示,因为可能有无穷多个。但是可以比较容易的用数轴上一段连续区间来表示,例如x+1>2的解集如下,表示数轴上从1向右的部分(空心圆圈表示不含1)。
在这里插入图片描述

2. 不等式的性质

  • 如果不等式的两边同时加(或减)同一个数(或式子),不等号方向不变。
  • 如果不等式的两边同时乘(或除)同一正数,不等号的方向不变。
  • 如果不等式的两边同时乘(或除)同一负数,不等号的方向改变。

3. 一元一次不等式

含有一个未知数,且未知数的最高次数为1的不等式,叫做一元一次不等式。

例如:2x+2>4。

利用不等式的性质,两边同时除以2得x+1>2,然后两边同时减去1得x>1,所以上面第一个图表达的即为该不等式的解集。

4. 一元一次不等式组

类似于一元一次方程组,将两个不等式合起来,组成一个一元一次不等式组,例如:

  • x+1>2
  • x-1<3

即为一个标准的一元一次不等式组。

我们解上面的不等式可得出:

  • x>1
  • x<4

所以该不等式组的解集用数轴来表达即为图中阴影部分

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员大阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值