Bui~ 大模型卷啊卷,越来越多的大模型超越ChatGPT,以更少的资源做更强的功能。国产大模型正在重写规则😏。虽然各大厂家公开的免费AI对话窗口,但是有些情况需要自己部署大模型,例如涉及到数据隐私与安全、响应速度、没有网络的环境等。同时,本地部署的大模型接上边缘设备的话(例如我们synaptics的Astra平台)就能形成流行的AI组织架构——边缘云计算框架,让大模型也能为边缘设备服务。那如何让边缘设备借用局域网的本地大模型去做一些AI处理呢?别着急,书分两章,这一篇先教大家如何使用Ollama在本地部署大模型。
Ollama出现的目的就是让大语言模型的部署和使用更加便捷,用户无需复杂的云计算基础设施或专业的技术知识,就能在本地设备上快速搭建和运行大模型。特点是简单易用、
模型丰富、快速部署。简单来说就是它收集了各大主流大模型,用户无需进行复杂的环境配置和依赖安装。它会自动处理模型的下载、缓存和管理,大大节省了时间和精力。
第一步:下载安装Ollama软件
这里是Ollama的主页,选择自己使用的平台下载对应的安装软件安装。软件的相关文档可以在ollama/docs at main · ollama/ollama · GitHub 中查看。推荐机器有2g内存以上的gpu,当然越好的gpu推理速度就越快。
第二步:运行Ollama
打开命令行窗口,像windows的打开cmd或powershell,在命令行中输入ollama -v查看是否有安装成功,显示有版本号就表示安装成功,再输入ollama serve启动服务。然后回到Ollama的主页,去找想要部署的模型。参数量越大就越准确,但需要的存储空间也就越大,选择好之后,复制指令到新的一个命令行窗口中命令行运行。
第一次运行会下载模型文件,根据模型参数量决定模型文件大小,下载完成之后会直接出现对话界面,就可以开始对话了
到了这一步就已经部署完大模型了,但是这个界面对使用来说不太方便,所以要引入另外一个架构WebUI,以便可以通过浏览器访问和设置大模型。
第三步(可选,为了更方便的使用):部署open WebUI:
使用anaconda 创建虚拟环境,这一步也可以不要,有一个python环境就好,但是用这个软件创建环境,可以更好地管理python环境,不容易出错。anaconda的使用可以网上找anaconda的相关教程,这里不赘述。
创建一个环境
conda create -n open-webui python=3.11
激活环境
conda activate open-webui
安装open-webui
pip install open-webui
第四步(可选,依赖第三步):使用open-webui:
确保前面三步都完成了,如果是前期做了环境部署的,后续从新开启只需要启动服务ollama serve,跑模型ollama run <模型名:参数两量>,如果不知道已经下载了哪些模型,可以用ollama list查看一下。然后开启python虚拟环境(如果有必要的话)conda activate open-webui,前面这些步骤都做完后,开启open-webui的服务open-webui serve,可能需要等待一会,直到出现下面信息就表示服务已开启完成。
这个时候,如果你是本机跑的服务,就可以在浏览器输入http://0.0.0.0:8080进入模型对话界面,随便创建个管理员账户密码进入。如果你是局域网里别的主机跑这个服务,也可以用那台主机的IP去访问这个对话界面。如我在10.10.10.10的主机上创建的服务,我的电脑是同一个局域网,我就可以在浏览器输入http:// 10.10.10.10:8080去访问。
接下来就是大家经常用到的界面了,不同的是这里的模型可以设置更多参数来满足自己的要求。
下一集,将用synaptics的Astra平台来带领大家给边缘设备赋能AI。
以上是本期博文的全部内容,如有疑问请在博文下方评论留言,我会尽快解答(o´ω`o)و。谢谢大家浏览,我们下期再见。
简单是长期努力的结果,而不是起点
—— 不是我说的
FAQ 1:Ollama 支持哪些操作系统?
A1:Ollama 支持主流操作系统,包括 Windows、macOS 和 Linux
FAQ 2:部署大模型需要多大的存储空间?
A2:存储需求取决于模型的参数量,通常从几百 MB 到几百 GB 不等
FAQ 3:没有 GPU 的设备可以运行 Ollama 吗?
A3:可以,但推理速度会很慢,建议使用配备 GPU 的设备以获得更好的性能
FAQ 4:WebUI 是否必须安装?
A4: WebUI 是可选的,主要用于提升使用体验。如果您习惯命令行操作,可以不安装 WebUI
FAQ 5:Ollama 是否支持多用户访问?
A5: 是的,通过 WebUI,您可以在局域网内实现多用户访问