强势来袭,引爆边缘AI运算新革命 - DeepX DX-M1 AI加速卡结合Rockchip RK3588多路物体检测解决方案

在2025年,人工智能(AI) 与边缘计算(Edge Computing) 将迎来一个崭新的里程碑DeepX 推出了一款革命性的产品 DeepX DX-M1 AI 推理加速卡 采用 PCIe Gen3 M.2 M-Key 接口,具备高达 25 TOPS 的卓越运算性能,以及高准确度、低功耗、低温度等性能表现。

通过结合 Orange Pi 5 Plus(Rockchip RK3588) 与 DeepX AI 加速卡,这套解决方案以极高性价比为基础,能够为工业电脑提供即插即用的便捷体验,并以「平台升级,迎接AI智能时代」为设计理念,助力开发者轻松迈向人工智能领域,为 AI 应用开启了全新篇章。

图1 基于 DeepX AI 加速卡结合 Rockchip RK3588 多路物体检测解决方案优势示意图

同时,提供丰富的软件资源与主流深度学习框架 ( 例如 TensorFlow、PyTorch 和 ONNX ) 的全面支持,无论是初学者还是专业人士,都能迅速掌握操作技巧,轻松完成 AI 模型的部署,让更多人能够参与其中。人工智能的应用开发中,促使创新变得更加触手可及

其中 边缘计算(Edge Computing) 与 神经运算处理芯片(Neural Processing Unit, NPU) 将是掀起这项浪潮的关键指标得以将智能设备更贴近人们的日常生活。

AI技术的进一步发展,更多的创新应用将逐步落地,彻底重塑我们的日常应用,于以下领域:

  • 智能监控:通过实时目标检测、行为分析与入侵预警,强化城市安全与监控系统。
  • 智慧零售:通过顾客行为分析与智能货架管理,提升购物体验,优化销售策略。
  • 医疗影像分析:运用 AI 协助医生进行疾病诊断(如肿瘤检测),提高医疗准确性。
  • 工业质检:自动化检测产品瑕疵,提高制造业质量管控与生产效率。
  • 高级辅助驾驶系统(ADAS):通过 AI 视觉技术,分析道路、行人等状况,以实现行车安全的目标。
  • 农业监测:监测作物健康状况,检测病虫害,优化农业管理,提高产量和品质。
  • 自走车:通过传感器和 AI 算法,自主导航并避开障碍物,应用于物流、巡检等多种场景。
  • 机械手臂:结合 AI 与视觉系统,能精确地执行组装、焊接等任务,提高生产效率和产品质量。
  • 自动送餐系统:外卖平台如 Uber Eats,正在美国多个城市部署由 Serve Robotics 开发的送餐机器人,这些机器人配备 AI 技术,能自主导航至顾客所在地,提供高效的送餐服务。
  • 无人机影像分析:AI 驱动的视觉系统使无人机能够进行地形物体检测、灾害评估和基础设施检查,提供高效的数据收集和分析。

    图2 AI应用方向示意图,出处 ChatGPT 生成

另外,可以通过 DeepX 的卓越运算性能,可以轻松打造 多路(Multi-Streamer) 的物体检测(Object Detection) 应用 无论是使用普通 USB 摄像头,还是通过网络流媒体来源,都能完美整合到各种智能场景中。由于目前 Orange Pi 5 Plus 的摄像头极限大约为 16 路 480p 流媒体输入,如果采用更高端的 NVR 作为主平台,更能发挥出 DX-M1 的极限。因此,更能适用于小型商场、停车场、会展中心等商品防盗、车辆安全管控、人流统计等应用中

图3 多路物件检测解决方案应用示意图,出处 ChatGPT 生成

DeepX:引领智能新浪潮的造势者

在边缘计算浪潮中,DeepX 是韩国的一家初创公司,拥有约 240 多项智能专利[link]。并在 CES 2024 一次荣获嵌入式、机器人、电脑整合三项创新奖[link] 等大奖。甚至被美国消费者技术协会 (CTA)评为“必访公司”,成为全球市场的焦点。[link]

DeepX DX-M1 AI 加速卡强势来袭,能够提供每瓦 5 TOPS 的计算性能,拥有强大的边缘计算能力 (25TOPS) 以及IQ8™(Intelligent Quantization Integer 8) 独有的量化技术,足够媲美 GPU 的准确度,在拥有 INT8 的极致效率的同时也能享受到 FP32 准确度,实现无与伦比的 AI 精度[link]

其内置搭配 4 GB 的内存(DDR) 用于访问模块,不会占用主系统的资源,大幅度减轻系统集成的负担。其卓越的性能表现成为智慧监控、智慧医疗、智慧制造等边缘 AI 应用的唯一首选

图4 DeepX AI 芯片规格示意图

软件持续优化更新:打造最佳用户体验

DeepX 不仅拥有强大的硬件性能,并且打造了一个完整且友好的软件生态系统,为开发者提供全方位的支持。其生态系统包含详细的快速入门指南(Quick Start Guide)、功能强大的软件开发工具包(SDK)、丰富的模型资源库(Model Zoo),以及多样化的示例应用程序。这些资源能有效协助开发者迅速整合并优化 AI 模型的运行,缩短开发时间,同时提升应用性能,让 AI 创新变得更加轻松实现。

软件由三大核心组件构成,分别是量化器(Quantizer)、编译器(DX-COM Compiler) 以及 运行时环境(DX-RT Runtime),共同驱动旗下的 DeepX AI SoC 系列产品。这些组件相互协作,形成一个高效的人工智能计算平台,为各种应用场景提供强大的支持。以下图示范说明其架构:

图5 DeepX 开发环境示意图,出处官方文件

卓越的AI性能

利用 DeepX DX-M1 芯片运行当前最热门的 YOLOv5s (640x640) 目标检测算法,可轻松达到每秒约 330 张。

图6 DeepX DX-M1 芯片性能数据表

下列表格是 GPU 与 DX-M1 的准确度分析,其中绿色字体表示 Full Precision 代表 GPU,蓝色字体表示 IQ8 代表 DeepX NPU。

图7 DeepX DX-M1与GPU准确度比较表,出处官方文件

丰富的 AI 应用

DeepX 致力于推动人工智能技术的普及,提供多样化的 AI 示例与教学资源,循序渐进地引导开发者掌握 AI 应用的实现过程。通过示例,开发者不仅能深入了解人工智能的核心技术,还能学习如何将其灵活运用于实际场景,从而加速创新与技术落地。

图8 DeepX 实际应用示意图

视频介绍:

参考网站:

►场景应用图

►展示板照片

►方案方块图

►核心技术优势

1. 采用 IQ8™ (Intelligent Quantization Integer 8) 量化技术,媲美 GPU 的准确度: DeepX 的 IQ8™ 技术需要配合数据集 (DataSet) 校正,即可轻松拥有 INT8 的极致效率的同时也能享受到 FP32 准确度,实现媲美 GPU 的 AI 准确度。

2. 不占用系统内存: 模块采用独立内存架构进行运作,其内建 4GB 存取容量,完全不依赖主系统的 RAM 资源,成功减轻了对系统整体性能的负担。

3. 最佳数据流优化,最大限度减少数据移动: 采用数据传输流优化设计,将内存设计于加速卡中,能够大幅度减少数据在主系统传输次数,从而显著提升处理速度并大幅降低延迟。

4. 高性价比与低功耗解决方案: 将主平台 Orange Pi 5 Plus 搭配 DeepX DX-M1 的 AI 芯片,即可无痛升级为更高阶的 AI 平台,每秒能够运行约 480 帧 (YOLOv5s) 的物体检测;且 DX-M1 拥有 5 TOPS/W 的性能表现,整套多路物体检测解决方案仅耗电约 14 W。

5. 多路应用的新概念: 随着边缘计算技术的快速发展,若将其结合区域化的应用场景,或许能开创出一种创新且具成本效益的解决方案。通过使用易于获取的摄像头,搭配一台智能工业主机以及 DeepX M.2 加速卡,便能实现多样化的应用需求。 此外,前端的摄像头还可根据实际需求进行灵活更换与配置,进一步提升系统的适应性与灵活性,为各个行业提供了更多可能性。

►方案规格

1. 主平台开发板采用 RockChip RK3588 平台为基础,搭载四颗 Cortex-A76 处理器与四颗 Cortex-A55 处理器,并提供高性能图像处理器 Arm Mali-G610 与神经运算处理器 NPU 等强大核心架构。

2. I/O Board 开发板提供强大的周边配置,如千兆以太网(Gigabit Ethernet)、HDMI 高清多媒体接口、USB Type A/C 3.0 通用串行总线接口、M.2 E-Key 传输接口、M.2 M-Key 传输接口,并能够通过扩展的 40 pin 针脚来模拟常用的 UART、I2C、SPI、CAN 等信号。

3. DeepX DX-M1 芯片提供强大的 AI 运算能力(25 TOPS),采用 PCIe Gen3 M.2 2280 M-Key 接口设计,搭载高性能的 DX-M1 芯片,展现出每瓦高达 5 TOPS 的卓越低功耗运算能力。此外,内置 4GB 动态随机存取存储器(DRAM),确保模块访问的高效性与稳定性。该加速卡全面支持 Linux 与 Windows 操作系统,并为开发者提供丰富的软件资源,方便快速集成与应用。

► 技术文档

点击此处前往大大通即可获得以下技术文档:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值