opencv中DMatch解释

queryIdx : 查询点的索引(当前要寻找匹配结果的点在它所在图片上的索引).
trainIdx : 被查询到的点的索引(存储库中的点的在存储库上的索引)
imgIdx : 有争议(常为0)

DMatch的定义
/*
 * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
 */
struct CV_EXPORTS_W_SIMPLE DMatch
{
    CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}

    CV_PROP_RW int queryIdx; // query descriptor index
    CV_PROP_RW int trainIdx; // train descriptor index
    CV_PROP_RW int imgIdx;   // train image index

    CV_PROP_RW float distance;

    // less is better
    bool operator<( const DMatch &m ) const
    {
        return distance < m.distance;
    }
};
具体解释,验证过程

我们从图1中提取了 sift/surf/orb或其他种类的特征点vector<KeyPoint> keypoints_1以及相应的描述子descriptor1,大小为319,从图2中也提取了特征点vector<KeyPoint> keypoints_2以及相应的描述子descriptor2,大小为320.

//descriptor1中的每一个特征点的描述子称为 d1i,descriptor2中的每一个特征点的描述子称为 d2i.

//通过opencv的`FlannBasedMatcher`或者`BruteForceMatcher<>`进行匹配,
// 在descriptor2中挑选两个离 `d1i`最近的描述子放入matches之中。
	FlannBasedMatcher matcher;
	std::vector<vector<DMatch>> matches;
    matcher.knnMatch(descriptor1,descriptor2,matches,2);  

通过调试得到如图所示结果:
在这里插入图片描述
可以看出 queryIdx是按顺序增大的, 相应的trainIdx是不断跳变的,且imgIdx一直是0.
可以从matches[0]看出,这里的queryIdx是指第0张图的第0个特征点匹配到了第1张图的第6个特征点(距离最近),同时第0张图的第0个特征点匹配到了第1张图的第128个特征点(距离第2近)。

于是 queryIdx 是你想要为“它”找到匹配结果的“它”的索引。 trainIdx是 “它”的匹配结果的索引。
由于imgIdx一直是0,只能说在这里可能没什么用。有些文章说 imgIdx指的是第0张图,有的说是第1张图的意思,从这里感觉更应该是指第0张图。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值