页码 | 行或位置 | 原内容 | 更正为 | 备注 |
---|---|---|---|---|
53 | 式(3.5) | x i ± k x_i\pm k xi±k | y i ± k y_i\pm k yi±k | |
69 | 15行 | BoundaryFill4(x,y-1, fill, boundaryColor…); | BoundaryFill4(x,y-1, boundaryColor…); | 去掉fill,16-17行同样处理 |
98 | 式(4.49) | [ c o s θ − s i n θ 0 s i n θ c o s θ 0 0 0 1 ] \begin{bmatrix} cos\theta & \mathbf{-sin\theta} & 0 \\ \mathbf{sin\theta} & cos\theta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} ⎣⎡cosθsinθ0−sinθcosθ0001⎦⎤ | [ c o s θ s i n θ 0 − s i n θ c o s θ 0 0 0 1 ] \begin{bmatrix} cos\theta & \mathbf{sin\theta} & 0 \\ \mathbf{-sin\theta} & cos\theta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} ⎣⎡cosθ−sinθ0sinθcosθ0001⎦⎤ | |
180 | 图6.13 | |||
193 | B i , n ′ ( t ) B^{'}_{i, n}(t) Bi,n′(t)式第2行 | n ( n − 1 ) ! ( i − 1 ) ! [ ( n − 1 ) − ( i − 1 ) ] t i − 1 ( 1 − t ) ( n − 1 ) ( t − 1 ) − \frac{n(n-1)!}{(i-1)![(n-1)-(i-1)]}t^{i-1}(1-t)^{(n-1)(t-1)}- (i−1)![(n−1)−(i−1)]n(n−1)!ti−1(1−t)(n−1)(t−1)− | n ( n − 1 ) ! ( i − 1 ) ! [ ( n − 1 ) − ( i − 1 ) ] ! t i − 1 ( 1 − t ) ( n − 1 ) − ( t − 1 ) − \frac{n(n-1)!}{(i-1)![(n-1)-(i-1)]!}t^{i-1}(1-t)^{(n-1)-(t-1)}- (i−1)![(n−1)−(i−1)]!n(n−1)!ti−1(1−t)(n−1)−(t−1)− | |
194 | 倒数第4行及相应代码 | 采用与上述Hermite曲线示例代码中相同的Point类定义,… | 删去原文,并补充了Point类定义 | 完整代码 |
196 | void Casteljau(…)的第6行与倒数第4行 | … MoveTo(p0); … dc->LineTo(p03) … | … MoveTo(p0.x, p0.y); … LineTo(p03.x, p03.y); … | 完整代码 |
《计算机图形学基础(OpenGL版)》(第2版)勘误表
于 2020-09-15 21:43:46 首次发布