《计算机图形学基础(OpenGL版)》(第2版)勘误表

页码行或位置原内容更正为备注
53式(3.5) x i ± k x_i\pm k xi±k y i ± k y_i\pm k yi±k
6915行BoundaryFill4(x,y-1, fill, boundaryColor…);BoundaryFill4(x,y-1, boundaryColor…);去掉fill,16-17行同样处理
98式(4.49) [ c o s θ − s i n θ 0 s i n θ c o s θ 0 0 0 1 ] \begin{bmatrix} cos\theta & \mathbf{-sin\theta} & 0 \\ \mathbf{sin\theta} & cos\theta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} cosθsinθ0sinθcosθ0001 [ c o s θ s i n θ 0 − s i n θ c o s θ 0 0 0 1 ] \begin{bmatrix} cos\theta & \mathbf{sin\theta} & 0 \\ \mathbf{-sin\theta} & cos\theta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} cosθsinθ0sinθcosθ0001
180图6.13在这里插入图片描述在这里插入图片描述
193 B i , n ′ ( t ) B^{'}_{i, n}(t) Bi,n(t)式第2行 n ( n − 1 ) ! ( i − 1 ) ! [ ( n − 1 ) − ( i − 1 ) ] t i − 1 ( 1 − t ) ( n − 1 ) ( t − 1 ) − \frac{n(n-1)!}{(i-1)![(n-1)-(i-1)]}t^{i-1}(1-t)^{(n-1)(t-1)}- (i1)![(n1)(i1)]n(n1)!ti1(1t)(n1)(t1) n ( n − 1 ) ! ( i − 1 ) ! [ ( n − 1 ) − ( i − 1 ) ] ! t i − 1 ( 1 − t ) ( n − 1 ) − ( t − 1 ) − \frac{n(n-1)!}{(i-1)![(n-1)-(i-1)]!}t^{i-1}(1-t)^{(n-1)-(t-1)}- (i1)![(n1)(i1)]!n(n1)!ti1(1t)(n1)(t1)
194倒数第4行及相应代码采用与上述Hermite曲线示例代码中相同的Point类定义,…删去原文,并补充了Point类定义完整代码
196void Casteljau(…)的第6行与倒数第4行
MoveTo(p0);

dc->LineTo(p03)

MoveTo(p0.x, p0.y);

LineTo(p03.x, p03.y);
完整代码
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图形空间

文章不错,赞赏鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值