The State of Visual Analytics Views on what visual analytics is and where it is going

This paper appears in: Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on.

 

现在归纳三页文章的大致内容,其实这个是四位作者报告的简短归纳而已,下次有机会找到报告现场的录音或视频就最好了,如果有哪个可以提供这个的话,真的是太感谢了。

 

Visual analytics was defined as "the science of analytical reasoning facilitated by interactive visual interfaces". While visual analytics started in the United States with a focus on security, it is now a worldwide research agenda with a broad range of application domains.

 

The purpose of the presentations is not to give a critical review of the literature but rather to give a review on the field and to provide a contextual perspective based on the panelists' years of experience and accumulated knowledge.

 

POSITION STATEMENTS

 

1. Pat Hanrahan  (http://graphics.stanford.edu/~hanrahan/ ) One insight was to exploit a variety of computational analytics algorithms to create more meaningful visualizations; another goal was to restructure human-computer interaction to directly support complex decision-making tasks. The problems of scale were at the forefront.

 

2. Daniel Keim (http://www.informatik.uni-konstanz.de/arbeitsgruppen/infovis/mitglieder/prof-dr-daniel-keim/) The graphical representation of relevant information from large, complex, and fast growing data streams makes new demands, particularly on the scalability of the techniques. Scalable visual analytics systems should tightly integrate state-of-the-art automatic data analysis methods with interactive visualization techniques and be integrated smoothly into custom-designed processes. While a number of successful applications of visual analytics have been developed over the last five years, the development of tightly integrated data analysis and visualization methods is still in the beginning and more research is needed to make progress in this respect.

 

3. Ben Shneiderman (http://www.cs.umd.edu/~ben/index.html) Existing process models for visual analytics can be simple four stage processes, such as Gather Information, Re-represent, Develop Insight, Produce Results. Further challenges come from dealing with varying information(e.g., real, ordinal, nominal) and domain specific needs(e.g., genomic, financial, social networks).

 

4. Stuart Card (http://www2.parc.com/istl/groups/uir/people/stuart/stuart.htm) Visual analytics is an attempt to go beyond the use of Interactive Visualization for gaining insight into data by adding Computational Analysis + a methodology of Analytical Reasoning.

 

目前看这些还没有很多的体会,或许将来做些东西以后,再回过头来看,就会有更多的体会,但是需要时不时地去看看这些guidance,对接下来的论文会有指引的帮助。

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值