问题:
我们称n的全排列为1,2,3...,n按照一定顺序组成的序列
比如3的所有全排列为:
- 1 2 3
- 1 3 2
- 2 1 3
- 2 3 1
- 3 1 2
- 3 2 1
现在请你生成n的所有全排列
//代码部分:
#include<iostream>
#include<vector>
using namespace std;
void find(vector<int>& nums,vector<bool>& used, vector<int>& pre,int index)
{
if(index==nums.size())
{
for(int i=0;i<pre.size();i++)
{
cout<<pre[i]<<" ";
}
cout<<endl;
return;
}
for(int i=0;i<nums.size();i++)
{
if(!used[i])
{
used[i]=true;
pre[index]=nums[i];
find(nums,used,pre,index+1);
used[i]=false;
}
}
}
int main()
{
int n;
cin>>n;
vector<int> nums;
for(int i=0;i<n;i++)
{
nums.push_back(i+1);
}
vector<bool> used(nums.size(),false);
vector<int> pre(nums.size());
find(nums,used,pre,0);
return 0;
}
思路:
我使用的是用递归的方式一一求解出不同的方案。nums存储的是从1到n的数值集合,used存储的是1到n是否有被使用的boo类型集合,而pre存储的是不同的排列情况。在find方法中,我对pre的每一个下标都进行了递归寻找不同的排列。
例子:
我从1到3来举一个例子,pre[0]有3种情况,所以通过一个for循环来依次遍历这3种情况,当pre[0]为1时,对应的used[0]则要变为true表示已经使用过,然后对剩下的pre[1]和pre[2]的情况依次使用上面的方法,当index的值等于nums.size()时,说明已经全排列一种了,要依次返回到pre[0]的位置,并且used对应的都要还原成true了。