Matlab与PLC进行通信(通过ModBus TCP协议)

软件:博途V15、Matlab2018b
非必须软件:Modbus Poll(模拟Client端)、Modbus Slave(模拟Server端)
编程:梯形图

此通信可分为Server端和Client端。将数据被读写的端理解为Server端,进行操控的端理解为Client端。故这个PLC为Server端,Matlab部分为Client端。

Server端:

1.创建DataSend数据块,用于matlab对其数据进行读写(data1为Bool类型不能成功写入)。

2.右键单击DataSend数据块,在属性里取消勾选优化块的访问(很重要,不然数据无法使用绝对地址,数据无法通信)

3.创建全局数据块SEND作为TCON_IP_v4传输对象

在块里创建SendObj,数据类型为TCON_IP_v4,该变量是ModBus TCP的通信描述。
变量的含义:

  • InterfaceId: PLC的硬件标识符
  • ID: 连接编号,取值范围1~4095
  • ADDR[1]~[4]: Client端的IP地址(参考适配器设置里PLC的那个网络连接(非PLC自身IP))
  • LocalPort: Server的端口,一般Server端才需要设置,Client端可采用默认值(默认用502)
4.编写梯形图

首先需要使用MB_SERVER指令

将其拉到程序段中并配置如下,其中MB_HOLD_RGB接上要读写的数据块(直接拉上去就行),CONNECT则连上通信描述。

然后将程序下载到PLC中。
可以监控变量或者用比较指令编写简单梯形图来看是否通信成功。

Matlab端:

代码:

clear
clc
 
%创建modbus连接对象
m = modbus('tcpip','192.168.10.1',502); %IP地址为PLC硬件上的地址
 
 
%% modbus的读取写法:https://ww2.mathworks.cn/help/instrument/modbus.write.html
% read(m,target,address)
% read(m,target,address,count)
% read(m,target,address,count,serverId,precision)
% count这个参数要和数据个数保持一致,不然可能出错
 
 
%% modbus的写入写法:https://ww2.mathworks.cn/help/instrument/modbus.read.html?searchHighlight=read%20modbus&s_tid=srchtitle
% write(m,target,address,values)
% write(m,target,address,values,serverId,'precision')
 
 
%% 读写Q端
% data3 = read(m,'coils',1,8)
% write(m,'coils',1,[0,0,0]);
 
 
%% 读I端
% data2 = read(m,'inputs',1,8)
 
 
%% 读写保持寄存器(数据块)里的内容
%布尔值写不进去
data1 = read(m,'holdingregs',1,3)  %第四个参数要和读取的数据个数保持一致,不然可能出错
write(m,'holdingregs',1,[1,1,1]);
 
clear m

运行此matlab代码即可读取出那3个数据,并且将[1,1,1]对应的写进去,data1为Bool类型故写不进去。

如果通信失败:

PLC下载好程序后如果通信不上首先应尝试重启PLC,然后再次通信。
如果还是不行可用Modbus Poll和Modbus Slave来调试

Modbus Slave使用:
在Connection里的Connection Setup可以创建连接,如下配置后点击ok就启动了

在Setup的Slave Definition里可以设置相关参数

Modbus Poll使用:
由于两个软件都是在本机,故ip写127.0.0.1

在Setup里的Read/Write Definition里设置如下,注意相关参数要和Modbue Slave或者PLC的相对应。

如果要用这个软件修改PLC的数据需要在Functions里成组的修改,在界面单个修改无效。

总结

此为个人备忘笔记

### 深度相机彩色相机对齐方法 (D2C) #### 理论基础 为了实现深度相机彩色相机之间的有效对齐,需要考虑两者的几何关系和时间同步。校准过程主要包括内外参数估计、畸变矫正以及最终的空间变换矩阵求解[^1]。 #### 实现步骤 ##### 数据收集 获取一组由同一场景下的深度图像和对应的RGB图像组成的配对样本集。这些样本应尽可能覆盖整个视场范围,并包含不同距离和平面角度的对象实例。 ##### 内外参标定 利用标准棋盘格或其他已知模式作为参照物来执行单独的内部参数(焦距f_x,f_y; 主点坐标c_x,c_y)和外部旋转平移向量(R,t) 的估算工作。这一步骤可以借助OpenCV库中的`cv::calibrateCamera()`函数完成[^3]。 ```cpp // C++ code snippet using OpenCV for camera calibration std::vector<std::vector<cv::Point3f>> objectPoints; std::vector<std::vector<cv::Point2f>> imagePoints; bool success = cv::calibrateCamera(objectPoints, imagePoints, imageSize, K, distCoeffs, rvecs, tvecs); if (!success){ std::cerr << "Calibration failed." << std::endl; } ``` ##### 畸变修正 根据上一步得到的结果调整原始图片以消除镜头引起的失真效应。具体来说就是应用反向映射算法将理想位置上的像素值重新分配给实际观测到的位置。 ##### 变换矩阵计算 当两个摄像机都经过充分校正之后,则可通过共同观察某些特征点的方式建立两者间的刚体转换模型——即寻找能够使一对对应点之间误差最小化的R|t组合。该操作同样可以在OpenCV框架下轻松达成: ```python import numpy as np import cv2 # Assuming we have matched points from both cameras stored in pts_depth and pts_rgb lists. E, mask = cv2.findEssentialMat(pts_depth, pts_rgb, focal=K[0][0], pp=(K[0][2], K[1][2])) _, R, t, _ = cv2.recoverPose(E, pts_depth, pts_rgb, focal=K[0][0], pp=(K[0][2], K[1][2])) transformation_matrix = np.hstack((R, t)) print(f"Transformation matrix:\n{transformation_matrix}") ``` 上述代码片段展示了如何使用Python版本的OpenCV来进行本质矩阵E及其分解后的旋转矩阵R和平移矢量t的计算。最后构建了一个4×4大小的整体变换阵列用于后续处理阶段。 #### 应用案例 一旦完成了以上所有准备工作,在实际部署过程中就可以依靠预先训练好的神经网络或者其他机器学习工具辅助完成更复杂的任务,比如三维重建或是增强现实效果渲染等[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值