RFECV方法实现特征选择

RFECV方法实现特征选择分成两个部分:

  • RFE(Recursive feature elimination):递归特征消除,用来对特征进行重要性评级。
  • CV(Cross Validation):交叉验证,在特征评级后,通过交叉验证,选择最佳数量的特征。

具体过程如下:

  • RFE阶段
    1 初始的特征集为所有可用的特征。
    2 使用当前特征集进行建模,然后计算每个特征的重要性。
    3 删除最不重要的一个(或多个)特征,更新特征集。
    4 跳转到步骤2,直到完成所有特征的重要性评级。
  • CV阶段
    1 根据RFE阶段确定的特征重要性,依次选择不同数量的特征。
    2 对选定的特征集进行交叉验证。
    3 确定平均分最高的特征数量,完成特征选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值