【模型评估】AP 和他的兄弟们:mAP、AP50、APs、APm、APl

AP是衡量目标检测模型性能的关键指标,涉及精确率和召回率的权衡。文章介绍了AP的计算、P-R曲线的绘制以及与AUC的区别,同时探讨了在目标检测中AP、mAP、AP50等变体的含义和应用。AP通过不同IOU阈值下的平均精确率评估模型,而AUC则关注整体分类能力。在实际应用中,AP的变体提供了更具体的任务相关性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


AP是在目标检测任务中,常常被用于评估模型预测能力的指标。那么, AP是什么?为什么能够充当 目标检测任务,不同模型综合对比评测的公认指标呢?

除此之外,还需要思考:AP有什么特点,成为了目标检测领域,无法被替代的存在?搞明白了这点,也就搞懂了AP的原理。

在学习下文之前,混淆矩阵和ROC可以先了解下:

  1. 【模型评估】混淆矩阵(confusion_matrix)之 TP、FP、TN、FN;敏感度、特异度、准确率、精确率
  2. 【模型评估】ROC(Receiver operating characteristic)与 AUC

一、什么是AP和P-R

average_precision_scor

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值