编辑距离矩阵及在java中的应用

本文介绍了编辑距离矩阵的概念,通过一个简单的例子展示了如何计算两个字符串之间的最小编辑距离,并详细解释了如何根据矩阵推导编辑路径。最后,讨论了在Java中如何利用编辑距离矩阵来体现字符串的修改过程。
摘要由CSDN通过智能技术生成

刚好项目有需求要使用到,了解后觉得挺有意思的就发出来跟大家分享下,主要还是为了以后自己可以回头翻翻,大神勿喷啊

下面开始进入正题:

一个原始字符串,经过不断的修改,删除最后变成另外一个字符串,怎么体现出这个字符串的修改痕迹呢,这里面有个最小路径的概念,也就是原始字符串->目标字符串最少要经过多少步骤

假设原字符串:src="abCd";

假设新字符串:dst="ABCD";

那么从abCd->ABCD最少需要经过多少步呢?

首先,我们先画个矩阵图形来加深理解,如下图


1234表示字符串中每一个字符对应的位置,不一定原始字符串就跟目标字符串一样长,有可能原始字符串比目标字符串长,也可能短,这里为了方便演示就选择了一样长

tmp为中间值,为了后面的计算

然后开始算法,这个算法是哪位数据家提出来的我忘记了,有知道的小伙伴可以留言告知下哈

其中有个最小值的概念,以4个小正方形为一组,我们先算出第一个格子的值,如下图


上面红框框出来的小正方形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值