Adversarial synthesis learning enable segmentation without target modality ground truth

简介

基于深度学习的分割有一个关键的限制:缺乏普遍性。通常,当用不同的成像方式分割器官或从不同的疾病组分割异常器官时,一个人会手工标注新的训练图像。如果一个人能够从一种模式(例如,MRI)中重用手工标签来训练一种新的模式(例如,CT)的分割网络,那么手动的努力就可以减轻。在此之前,已有两种阶段方法被提出用于使用循环生成对抗网络(CycleGAN)来合成目标模式的训练图像。然后,这些努力训练了一个独立使用合成图像的分割网络。然而,这两个独立的阶段并没有使用合成和分割之间的互补信息。因此,我们提出了一种新颖的端对端合成分割网络(EssNet),无需使用CT的人工标签,即可实现不成对的MRI到CT图像的合成和CT脾肿大的分割。在这片论文中,EssNet通过不成对的MRI和CT扫描进行训练,只使用MRI扫描的手工标签。

数据

以不成对的60例全腹MRI T2w扫描和19例全腹CT脾肿大脾做为实验数据,每个MRI分别手工绘制6个标签(脾、左肾、右肾、肝、胃、体),每次CT扫描手工绘制1个标签(脾)。采用75例正常脾脏全腹CT扫描,训练DCNN方法。

方法

EssNet网络结构如图2所示,这里A代表MR图像,B代表CT图像。两个生成器G1,G2是两个有9块ResNet组成的generator, G1将模态A的图像x转换为图像B( G1(x) G 1 ( x ) ),同时G2将模态B的图像y转换为图像A( G2(y) G 2 ( y ) )。PatchGAN被用作两个对抗的discriminator(D1和D2)。D1用来分辨CT图像时真实的还是生成的,D2则用来判别MR图像。这里使用了两个训练途径(Path A和Path B)。这个循环的生成自网络基本上相似于CycleGAN.
这里写图片描述
这里写图片描述
这里写图片描述
EssNet的主要目标是用来端到端的生成和分割,分割网络作为G1之后的一个额外向前的分支,被串联到Path A中。S的网络结构与G1完全相同,即:9块ResNet。
训练网络中用到了5个损失函数,两个adversarial损失如下:

LGAN(G1,D1,A,B)=EyB[log(D1(y))]+ExA[log(1D1(G1(X)))] L G A N ( G 1 , D 1 , A , B ) = E y ∼ B [ l o g ( D 1 ( y ) ) ] + E x ∼ A [ l o g ( 1 − D 1 ( G 1 ( X ) ) ) ]

LGANG2,B2,B,A=ExA[log(D2(X))]+EyB[log(1D2(G2(y)))] L G A N G 2 , B 2 , B , A = E x ∼ A [ l o g ( D 2 ( X ) ) ] + E y ∼ B [ l o g ( 1 − D 2 ( G 2 ( y ) ) ) ]

两个 cycle consistency loss Lcycle L c y c l e 用来比较重构图像和真实图像。
Lcycle(G1,G2,A)=ExA[||G2(G1(x))x||1] L c y c l e ( G 1 , G 2 , A ) = E x ∼ A [ | | G 2 ( G 1 ( x ) ) − x | | 1 ]

Lcycle(G2,G1,A)=ExB[||G1(G2(y))y||1] L c y c l e ( G 2 , G 1 , A ) = E x ∼ B [ | | G 1 ( G 2 ( y ) ) − y | | 1 ]

分割损失如下:
Lseg(S,G1,A)=imilog(S(G1(xi))) L s e g ( S , G 1 , A ) = − ∑ i m i ⋅ l o g ( S ( G 1 ( x i ) ) )

m是图像x的手工标签,i是像素点索引。total loss定义如下:
Ltotal=λ1LGAN(G1,D1,A,B)+λ2LGAN(G1,B2,B,A)+λ3Lcycle(G1,G2,A)+λ4Lcycle(G2,G1,B)+λ5Lseg(S,G1,A) L t o t a l = λ 1 ⋅ L G A N ( G 1 , D 1 , A , B ) + λ 2 ⋅ L G A N ( G 1 , B 2 , B , A ) + λ 3 ⋅ L c y c l e ( G 1 , G 2 , A ) + λ 4 ⋅ L c y c l e ( G 2 , G 1 , B ) + λ 5 ⋅ L s e g ( S , G 1 , A )

在工作中,根据经验, λ λ 的取值分别为 λ1=1 λ 1 = 1 , λ2=1 λ 2 = 1 , λ3=10 λ 3 = 10 , λ4=10 λ 4 = 10 , λ5=1 λ 5 = 1 ,为了最小化 Ltotal L t o t a l ,这里使用了Adam优化器,通过path A和path B的重构图和分割图如图3所示。
在测试中,仅仅使用被训练的网络S, B B ′ 代表测试CT图像,采用自动分割和手工分割的Dice相似系数(DSC)值作为评价不同分割方法性能的指标。所有统计显著性检验均采用Wilcoxon 秩检验(p<0.05)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值