Automatic skin lesion segmentation with fully convolutional-deconvolutional networks

理解  Automatic skin lesion segmentation with fully convolutional-deconvolutional networks

 

1.  ISIC 2017: Skin Lesion Analysis Towards Melanoma Detection, Part 1: Lesion Segmentation.的一种解决方案的陈述。

2.  训练了一个deep fully convolutional-deconvolutional neural networks  网络。

3.  训练集包含2000张原始图片和其对应的mask。

4.  网络包含29层。

5.  网络结构如下,

6.  观察到大部分的图像 height:width 是3:4,所以将图像大小调整到 192*256.

7.  使用Adam optimization。初始学习率为0.003,在conv-4-1 and decv-5-1之前使用dropout with p = 0.5  。

8.  使用基于  Jaccard distance  设计的损失函数如下,

 9.  后处理

     (1)从网络输出中使用  dual-thresholds  来产生二值tumor mask 。

10.  结果:产生了average Jaccard index of 0.784在在线验证集上。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值