Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
Have you met this question in a real interview?
Yes
No
class Solution {
public:vector<vector<int> > fourSum(vector<int> &num, int target) {
int N=num.size();
vector<vector<int>> res;
if(N<4) return res;
sort(num.begin(),num.end());
for(int first=0;first<N-3;++first){
for(int second=first+1;second<N-2;++second){
int third=second+1,fourth=N-1;
int tem_target=target-num[first]-num[second];
while(third<fourth){
if(num[third]+num[fourth]==tem_target){
res.push_back(vector<int>({num[first],num[second],num[third],num[fourth]}));
while(num[third]==num[third+1]) ++third;while(num[second]==num[second+1]) ++second;
while(num[first]==num[first+1]) ++first;
++third;
}else if(num[third]+num[fourth]>tem_target){
--fourth;
}else{
++third;
}
}
}
}
return res;
}
};