TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation 论文

TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation一种基于transformer和互相关的红外与可见光图像融合方法

研究背景

问题背景:

  • 现有的方法都是通过卷积实现特征提取。 卷积可以提取良好的局部特征,但是卷积核的感受野带大小也限制了它依赖全局信息的能力。
  • 现有的方法在设计目标函数时忽略了输入图像与融合结果之间的互相关性,因此无法很好地训练深度模型。
网络框架

网络由四个模块组成,即编码器、局部特征提取分支(LFEB)、全局特征提取分支(GFEB)和解码器。

整体流程:首先将两个源图像进行通道维度上进行拼接作为输入送到编码器,经过编码器提取浅层特征后,将浅层特征同时送入局部特征分支和全局特征分支,同时提取局部特征和全局特征,将提取到的局部特征和全局特征按逐元素相加的方式得到融合特征,最后将融合特征送入到解码器进行图像重建。

在这里插入图片描述

  • 编码器结构:两个连续的卷积层组成。 每一层都采用一个3×3卷积,然后是一个批归一化(BN)和一个整流线性单元(RELU)。 编码器的输出分别送入两个并行支路,即LFEB和GFEB,以同时提取局部和全局互补特征。

在这里插入图片描述

  • 局部特征提取(LFEB):采用三个卷积层来捕获局部特征。 考虑到密集连接的网络可以加强特征传播,提高深度模型的训练效率,避免梯度消失的问题,将LFEB中的三层结构布置成密集的形状,以提高融合性能。

在这里插入图片描述

  • 全局特征提取(GFEB):用三个transformer块来保持全局特征。 具体来说,为了充分利用更重要的全局互补信息,有秩序地利用三个TRB构建深度融合模型。 在每个TRB中,首先采用层归一化(LN),然后采用多头自关注(MSA)和元素求和操作。就是正常的vision transformer操作(划分patch然后patch之间注意力操作)。

在这里插入图片描述

  • 解码器模块:经过LFEB和GFEB提取出来的特征采用逐元素相加的方法(也就是两个特征对应位置的像素进行相加)得到融合特征,然后将融合特征送入解码器中。解码器使用了两个卷积层。 第一层由一个3×3卷积、一个BN和一个RELU组成。 第二层由1×1卷积和TANH激活函数组成。最终生成融合图像。

在这里插入图片描述

红外和可见光图像融合缺乏地面真实参照,是以一种无监督的方式训练的。 因此,损失函数在影响融合性能方面起着至关重要的作用。

损失函数

损失函数:由Lcc ,Lp,Ls三部分组成。

Lcc(互相关损失函数):约束融合图像与输入图像之间有较强的互相关。NCC表示归一化互相关操作。

两个图像之间的互相关:通过两个图像之间的像素值体现(下面的公式我能看懂,但解释不出来),NCC越大表示两个图像互相关越强,Lcc损失越小。

在这里插入图片描述

Lp(像素强度损失): 约束融合图像保留源图像中的显著性目标。

在这里插入图片描述

Ls(结构相似性损失): 融合结果需要具有丰富的场景细节。 为此,设计了结构损失,以确保融合结果具有与输入图像相似的结构信息。

思考(SSIM与细节损失函数那个表示的细节信息更多,当然也可以一起使用),所以我认为,可以再添加一个Ltexture(细节损失函数,一般与像素强度损失函数一块出现),通过梯度信息更好的保留源图像的细节信息。

在这里插入图片描述

Ltexture(细节损失函数):细节信息一般通过梯度信息表示。

在这里插入图片描述

剩下的是实验设置和结果展示,参考原文吧。

结论

贡献点:

  • 我们提出了一种新的局部-全局并行网络,从局部保持和全局开发的角度来开发重要特征。 具体来说,设计了一个密集形状的局部特征提取分支(LFEB),以保持局部有用的特征,并充分重用卷积运算过程中可能丢失的信息。 设计了一个基于转换器的全局特征提取分支(GFEB),以保留全局特征并更好地构建长期关系。 值得一提的是,LFEB和GFEB以平行的方式布置,以便以更有效的方式捕获特征

  • 我们提出了一个互相关损失来训练所提出的模型,以更好地保持互补信息。 具体而言,红外图像提供了与目标相对应的热辐射信息,而可见光图像则提供了丰富的场景纹理细节。 为了充分捕捉这两种模式的互补信息,我们计算了输入图像和融合图像之间的归一化互相关。

参考原文:TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 单帧基于加权最小二乘的定格噪声修正是一种在未冷却的红外成像系统中的修正方法。该方法是为了解决红外成像中存在的定格噪声问题而提出的。 在红外成像过程中,由于系统自身的特点以及外部因素的干扰,成像结果中会存在一些无规律的噪声。这些噪声会干扰图像的质量,影响进一步的图像处理和分析。 该方法主要是通过对单帧图像进行修正来消除定格噪声。首先,利用最小二乘方法对图像中的定格噪声进行建模,并提取噪声分布的统计特征。然后,为了减少噪声对图像质量的影响,采用加权最小二乘算法来修正图像中的噪声。 加权最小二乘算法是一种通过给不同噪声像素赋予不同权重的方法来进行噪声修正。通常情况下,噪声像素的权重越低,修正后的图像质量也会越好。因此,在修正过程中,需要根据噪声像素的统计特征来确定噪声像素的权重。 通过将单帧图像进行加权最小二乘修正,可以有效地降低图像中的定格噪声水平,提高图像的质量和清晰度。这种修正方法在未冷却的红外成像系统中具有较好的实际应用价值,可以提高图像的可靠性和可视化效果。 ### 回答2: 无冷却红外成像系统中基于加权最小二乘的单帧列固定模式噪声校正,是一种用于去除图像中固定模式噪声的方法。 在无冷却红外成像系统中,由于传感器和电子组件的特性,图像可能存在固定模式噪声。这些噪声通常表现为能够在整个图像中看到的固定模式,比如亮点或者暗斑。 而单帧列固定模式噪声校正是一种基于一个图像帧进行噪声校正的技术。该方法通过对整个图像的每一列进行分析和处理来减少噪声的影响。 在校正过程中,首先采集一帧原始图像,并使用图像处理算法来检测和提取每一列的固定模式噪声。然后,根据噪声的特性和分布,使用加权最小二乘法对每一列的噪声进行建模和估计。 加权最小二乘法是一种通过最小化残差平方和来估计未知参数的方法。在这里,通过对每一列噪声的观测和预测值之间的差异进行优化,可以得到每一列的最佳权重。 最后,利用估计得到的权重对原始图像的每一列进行校正,即减去该列的固定模式噪声。通过这种方式,可以有效地降低图像中的固定模式噪声,并提高无冷却红外成像系统的图像质量。 总之,单帧列固定模式噪声校正是一种在无冷却红外成像系统中去除固定模式噪声的方法,它通过加权最小二乘法对每一列的噪声进行建模和估计,从而提高图像质量。 ### 回答3: 单帧基于加权最小二乘法的定型模式噪声校正在基于无冷却红外成像系统中的应用。 无冷却红外成像系统是一种常见的红外成像技术,用于检测热辐射,并将其转化为可见的图像。然而,在这种系统中,由于长期使用和其他因素的影响,会导致一些固定的噪声模式出现在图像中,影响图像质量。因此,对这些固定的噪声模式进行校正是提高无冷却红外成像系统图像质量的重要一步。 单帧基于加权最小二乘法的定型模式噪声校正是一种常用的校正方法。它基于采集到的单帧图像,在不会损失太多图像细节的前提下,对图像中存在的定型模式噪声进行校正。在这个方法中,通过事先对不同噪声源的统计特性进行建模,以确定用于校正的权重参数。然后,使用加权最小二乘法来对图像中的噪声进行估计和校正。 在该方法中,首先需要获取一帧物体场景图像。然后,通过分析该图像中存在的定型模式噪声,可以得到各个噪声源的统计特性和权重参数。接下来,根据图像中的噪声模式,使用加权最小二乘法对图像中的噪声进行估计和校正。最后,通过应用校正后的图像,可以得到更准确和清晰的图像,提高无冷却红外成像系统的成像质量。 单帧基于加权最小二乘法的定型模式噪声校正方法具有简单、高效的特点,并且不需要额外的硬件设备。因此,这种方法在无冷却红外成像系统的实际应用中具有很高的实用性。通过对定型模式噪声进行校正,可以有效提升无冷却红外成像系统的成像质量,提高图像的细节还原能力和噪声抑制能力,为红外成像技术的发展提供了重要支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值