最近的实验中涉及到了矩阵运算。其中EJML(Efficient Java Matrix Library)是矩阵运算java库。
话不多说,上代码:
下列代码中初始化了一个矩阵。然后,获得每行或者每列的最大最小值。
import org.ejml.data.DenseMatrix64F;
import org.ejml.ops.CommonOps;
import java.util.List;
public class MatrixHelper {
public static void main(String[] args) {
DenseMatrix64F L = new DenseMatrix64F(3, 3); // 初始化一个矩阵,并进行下面的赋值
L.set(0, 0, 4.0);
L.set(0, 1, 13.0);
L.set(0, 2, -16.0);
L.set(1, 0, 12.0);
L.set(1, 1, 37.0);
L.set(1, 2, -43.0);
L.set(2, 0, -16.0);
L.set(2, 1, -43.0);
L.set(2, 2, 98.0);
System.out.println("data为:");
System.out.println(L);
DenseMatrix64F mu_0 = getRowMax(L); // 获取行最大值
System.out.println("矩阵每一行的最大值为:" + mu_0);
DenseMatrix64F mu_1 = getColMax(L); // 获取列最大值
System.out.println("矩阵每一列的最大值为:" + mu_1);
DenseMatrix64F mu_2 = getRowMin(L); // 获取行最小值
System.out.println("矩阵每一行的最小值为:" + mu_2);
DenseMatrix64F mu_3 = getColMin(L); // 获取列最小值
System.out.println("矩阵每一列的最小值为:" + mu_3);
}
/**
* max of the data row
*
* @param data
* @return
*/
public static DenseMatrix64F getRowMax(DenseMatrix64F data) {
if (data.numCols > 1) {
// 将矩阵转换为行向量
DenseMatrix64F[] dataVectors = new DenseMatrix64F[data.numRows];
CommonOps.rowsToVector(data, dataVectors);
DenseMatrix64F max = new DenseMatrix64F(dataVectors.length, 1);// initialized to 0
for (int i = 0; i < dataVectors.length; i++) {
DenseMatrix64F vec = dataVectors[i];
max.set(i, CommonOps.elementMax(vec)); // 获取每一行数据的最大值
}
return max;
} else {
return data;
}
}
/**
* max of the data col
*
* @param data
* @return
*/
public static DenseMatrix64F getColMax(DenseMatrix64F data) {
if (data.numRows > 1) {
// 将矩阵转换为列向量
DenseMatrix64F[] dataVectors = new DenseMatrix64F[data.numCols];
CommonOps.columnsToVector(data, dataVectors);
DenseMatrix64F max = new DenseMatrix64F(1, dataVectors.length);// initialized to 0
for (int i = 0; i < dataVectors.length; i++) {
DenseMatrix64F vec = dataVectors[i];
max.set(i, CommonOps.elementMax(vec)); // 获取每一列数据的最大值
}
return max;
} else {
return data;
}
}
/**
* min of the data row
*
* @param data
* @return
*/
public static DenseMatrix64F getRowMin(DenseMatrix64F data) {
if (data.numCols > 1) {
// 将矩阵转换为行向量
DenseMatrix64F[] dataVectors = new DenseMatrix64F[data.numRows];
CommonOps.rowsToVector(data, dataVectors);
DenseMatrix64F max = new DenseMatrix64F(dataVectors.length, 1);// initialized to 0
for (int i = 0; i < dataVectors.length; i++) {
DenseMatrix64F vec = dataVectors[i];
max.set(i, CommonOps.elementMin(vec)); // 获取每一行数据的最小值
}
return max;
} else {
return data;
}
}
/**
* min of the data col
*
* @param data
* @return
*/
public static DenseMatrix64F getColMin(DenseMatrix64F data) {
// 将矩阵转换为列向量
if (data.numRows > 1) {
DenseMatrix64F[] dataVectors = new DenseMatrix64F[data.numCols];
CommonOps.columnsToVector(data, dataVectors);
DenseMatrix64F max = new DenseMatrix64F(1, dataVectors.length);// initialized to 0
for (int i = 0; i < dataVectors.length; i++) {
DenseMatrix64F vec = dataVectors[i];
max.set(i, CommonOps.elementMin(vec)); // 获取每一列数据的最小值
}
return max;
} else {
return data;
}
}
/**
* min of the data row
*
* @param data
* @return
*/
public static double[] getColMax(List<DenseMatrix64F> data) {
if (data.isEmpty()) {
return null;
}
DenseMatrix64F result = new DenseMatrix64F(data.size(), data.get(0).numCols);
// 将矩阵转换为行向量
for (int i = 0; i < data.size(); i++) {
if (data.get(i) != null) {
DenseMatrix64F vec = getColMax(data.get(i));
for (int j = 0; j < vec.numCols; j++) {
result.set(i, j, vec.get(j)); // 获取每一行数据的最小值
}
}
}
return getColMax(result).data;
}
/**
* min of the data col
*
* @param data
* @return
*/
public static double[] getColMin(List<DenseMatrix64F> data) {
if (data.isEmpty()) {
return null;
}
DenseMatrix64F result = new DenseMatrix64F(data.size(), data.get(0).numCols);
// 将矩阵转换为行向量
for (int i = 0; i < data.size(); i++) {
if (data.get(i) != null) {
DenseMatrix64F vec = getColMin(data.get(i));
for (int j = 0; j < vec.numCols; j++) {
result.set(i, j, vec.get(j)); // 获取每一行数据的最小值
}
}
}
return getColMin(result).data;
}
}
运行结果:
data为:
Type = dense , numRows = 3 , numCols = 3
4.000 13.000 -16.000
12.000 37.000 -43.000
-16.000 -43.000 98.000
矩阵每一行的最大值为:Type = dense , numRows = 3 , numCols = 1
13.000
37.000
98.000
矩阵每一列的最大值为:Type = dense , numRows = 1 , numCols = 3
12.000 37.000 98.000
矩阵每一行的最小值为:Type = dense , numRows = 3 , numCols = 1
-16.000
-43.000
-43.000
矩阵每一列的最小值为:Type = dense , numRows = 1 , numCols = 3
-16.000 -43.000 -43.000