DeepSeek + 本地知识库

我们可以通过 Ollama 实现私有化部署大模型,并完成对话与 API 访问的基本功能。然而,此时的大模型还无法访问私有知识库。本文将介绍如何通过 AnythingLLM 与 Ollama 结合,搭建一个具备私有知识库能力的 AI 应用。

AnythingLLM 简介

AnythingLLM 是一款开箱即用的一体化 AI 应用,支持 RAG(检索增强生成)、AI 代理等功能。它无需编写代码或处理复杂的基础设施问题,适合快速搭建私有知识库和智能问答系统。

主要特性:

  • 多种部署方式:支持云端、本地和自托管部署。
  • 多用户协作:支持团队协作,适用于企业知识管理和客户支持。
  • 多模型支持:兼容 OpenAI、Anthropic、LocalAI 等主流大模型。
  • 多向量数据库支持:支持 Pinecone、Weaviate 等向量数据库。
  • 多文件格式处理:支持 PDF、TXT、DOCX 等文件格式。
  • 实时网络搜索:结合 LLM 响应缓存与对话标记功能,提供高效的文档管理和智能问答能力。

下载与安装Ollama

首先,我们需要下载 Ollama 以及配置相关环境。 

Ollama 的 GitHub仓库 (https://github.com/ollama/ollama)中提供了详细的说明,简单总结如下: 

Step1:下载 Ollama

下载(https://ollama.com/download)并双击运行 Ollama 应用程序。 

Step2:验证安装

在命令行输入 ollama,如果出现以下信息,说明 Ollama 已经成功安装。 

Step3:拉取模型

deepseek-r1:1.5b 模型的大小为1.1g

ollama run deepseek-r1:1.5b
  • 从命令行,参考 Ollama 模型列表 (https://ollama.com/library)和 文本嵌入模型列表 (https://python.langchain.com/v0.2/docs/integrations/text_embedding/)拉取模型。我们以 deepseek-r1:1.5b 和 nomic-embed-text 为例:

  • 命令行输入 ollama pull deepseek-r1:1.5b,拉取通用的开源大语言模型 deepseek-r1:1.5b;(拉取模型时,可能比较缓慢。如果出现拉取错误,可以重新输入指令拉取)

  • 命令行输入 ollama pull nomic-embed-text 拉取 文本嵌入模型 (https://ollama.com/search?c=embedding)nomic-embed-text。

  • 当应用运行时,所有模型将自动在 localhost:11434 上启动。

  • 注意,你的模型选择需要考虑你的本地硬件能力,该教程的参考显存大小 CPU Memory > 8GB。

Step4:部署模型

命令行窗口运行以下命令,部署模型。 

ollama run deepseek-r1:1.5b 

下载与安装AnythingLLM 

AnythingLLM 提供了 Mac、Windows 和 Linux 的安装包,用户可以直接从官网下载并安装。

安装完成后,首次启动时会提示配置偏好设置。用户可以根据需求进行设置,后续也可以随时修改。

配置 LLM 提供商

在 AnythingLLM 的设置页面,可以通过 LLM 首选项 修改 LLM 提供商。本文使用本地部署的 Ollama 和  deepseek-r1:1.5b 模型。配置完成后,务必点击 Save changes 按钮保存设置。

注意: 关于 Ollama 的部署与使用,请参考另外一篇博客。

操作步骤如上:

1、点击 LLM 首选项

2、选择 Ollama 作为模型提供商

3、选择已安装的 DeepSeek 模型

4、注意下地址

5、保存

配置 Embedder首选项

操作步骤如上:

1、向量数据库不用动即可,使用自带的(PS:如果没有选择安装目录,默认在C盘,如果后续有需要可以挪走)

2、嵌入模型配置

3、可以使用自带的,也可以使用 Ollama 安装好的

4、配置完点击左下角的返回即可

上传文档

在聊天界面中,用户可以创建多个工作区。每个工作区可以独立管理文档和 LLM 设置,并支持多个会话(Thread),每个会话的上下文也是独立的。

点击上传图标,可以管理当前工作区的知识库。AnythingLLM 支持以下三种方式上传文档:

  1. 本地文档上传:直接上传本地文件。
  2. Web 链接:通过 URL 上传网页内容。
  3. 数据链接:从 GitHub、GitLab 等平台导入数据。

Documents 界面

在 Documents 界面,用户可以管理已上传的文档,并通过下方的上传按钮或拖拽方式上传新文档。

提示: 如果需要上传整个目录及其子目录中的文档,直接将目录拖拽到上传按钮上即可。

Data Connectors

Data Connectors 功能支持从 GitHub、GitLab 仓库或网站爬取数据。用户只需输入仓库地址和 Token,即可导入指定目录或网页内容。

上传示例

以下是一个从 GitHub 仓库导入数据的示例:

  1. 输入仓库地址和 Token。
  2. 通用 File Ignores 配置导入的目录。
  3. 点击导入按钮,等待数据加载完成。

导入完成后,用户可以在 Documents 界面选中文档,并点击 Move to Workspace 将其添加到工作区。

添加到工作区后,点击 Save and Embed,将文档内容转换为向量检索所需的嵌入数据结构。此过程可能会消耗较多 CPU 资源,具体时间取决于文档数量。

查询知识库

将文档添加到工作区后,用户可以通过设置聊天模式调整大模型的回复方式:

  • 聊天模式:结合 LLM 的通用知识和上传文档的上下文生成答案。
  • 查询模式:仅基于上传文档的上下文生成答案。

在聊天窗口中,用户可以直接提问。大模型会基于文档内容生成答案,并标注答案来源。

使用 Agent 能力

AnythingLLM 支持 AI 代理功能,用户可以通过 Agent 完成特定任务。除了官方提供的默认 Agent(如 Scrape websites),还支持通过社区添加自定义 Agent

配置 Agent

在设置页面的 代理技能 中,用户可以管理 Agent。默认开启的 Agent 无法关闭,其他 Agent 需要手动启用。

使用示例

以下是一个使用 Scrape websites Agent 的示例:

  1. 在聊天界面输入 @agent + 提示词,启动 Agent 会话。

  1. Agent 会通过 Web Scraping 工具爬取指定页面并返回结果。

注意: 启动 Agent 会话后,无需每次输入  @agent。退出 Agent 会话可通过切换聊天页面或输入  /exit 命令。

当会话提示 Agent session complete 时,表示已退出 Agent 会话。

结语

通过 AnythingLLM 和 Ollama 的结合,我们成功搭建了一个具备私有知识库能力的 AI 应用。私有知识库不仅可以让 AI 回答通用问题,还能基于私有文档(如企业内部资料、图书等)生成更精准的答案。

注意: 随着知识库中文档数量的增加,回答的准确性可能会受到影响。建议将文档分散到多个工作区,以提高检索效率。

个人知识库+本地大模型的优点如下:

第一、隐私性很好,不用担心自己的资料外泄、离线可用。

第二、在工作和学习过程中对自己整理的文档,能快速找到,并自动关联。

第三、在代码开发上,能参考你的开发习惯,快速生成代码。

### 如何在 DeepSeek 中集成和使用本地知识库 为了实现在 DeepSeek 中集成并使用本地知识库的功能,主要依赖于两个方面的工作:一是确保 DeepSeek 的成功本地部署;二是将选定的知识库或笔记软件与已部署的 DeepSeek 进行对接。 #### 一、准备环境与安装必要组件 按照官方文档说明完成 Ollama 和 AnythingLLM 的安装配置工作[^1]。这一步骤对于后续能够顺利连接到自定义的数据源至关重要。 #### 二、选择合适的知识库/笔记应用 针对希望接入的知识库类型,建议考虑支持 API 接口调用且具有良好社区评价的应用程序。例如 Notion 或者 Evernote 等平台提供了丰富的开发接口,便于与其他服务建立联系[^2]。 #### 三、创建API接口用于数据交互 为了让 DeepSeek 能够读取来自外部存储的信息,在所选笔记工具中设置 Webhook 或 RESTful APIs 来提供结构化的 JSON 数据给 DeepSeek 实例处理。此过程可能涉及到身份验证机制的设计以及权限管理策略的确立。 #### 四、修改DeepSeek配置文件指向新的数据源路径 编辑 DeepSeek 配置文件中的相应字段来指定新加入的知识库位置。通常情况下会涉及更改数据库链接字符串或是增加额外参数以适应特定格式的要求。 ```json { "knowledge_base": { "type": "custom", "source_url": "http://localhost:8080/api/v1/documents" } } ``` 以上JSON片段展示了如何调整配置使得 DeepSeek 可以识别新增加的数据源地址。 #### 五、测试连通性和功能性 最后一步是对整个系统的稳定性进行全面检测,确认可以从 DeepSeek 正常检索到来自本地知识库的内容,并且具备基本的操作能力如查询、更新等操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值