n=∑ϕ(d) (d|n) 的证明

版权声明:hhhhh https://blog.csdn.net/WT_cnyali/article/details/78369210

- section 1

证明n=d|nϕ(d)
n=Πmi=1paii
由于欧拉函数是积性函数,有

d|nϕ(d)=Πmi=1ϕ(pij)(0jai)

因式分解,上式等价于
Πmi=1(j=0aiϕ(pij))=Πmi=1(j=1ai(pijpij1)+1)=Πmi=1piai=n

命题得证。

- section 2

由于koishi514太强了,所以给出他告诉我的一种办法。
列出

1n,2n,3n,,nn
一共n个分数,再将他们化简.
最简分数ab在上面出现的话,当且仅当b|n(a,b)=1
那么以b为分母的分数共ϕ(b)个。
分母一共被划分为d|n1份.
所以
n=d|nϕ(d)

阅读更多
换一批

没有更多推荐了,返回首页