n=∑ϕ(d) (d|n) 的证明

- section 1

证明n=d|nϕ(d)
n=Πmi=1paii
由于欧拉函数是积性函数,有

d|nϕ(d)=Πmi=1ϕ(pij)(0jai)

因式分解,上式等价于
Πmi=1(j=0aiϕ(pij))=Πmi=1(j=1ai(pijpij1)+1)=Πmi=1piai=n

命题得证。

- section 2

由于koishi514太强了,所以给出他告诉我的一种办法。
列出

1n,2n,3n,,nn
一共n个分数,再将他们化简.
最简分数ab在上面出现的话,当且仅当b|n(a,b)=1
那么以b为分母的分数共ϕ(b)个。
分母一共被划分为d|n1份.
所以
n=d|nϕ(d)

阅读更多
版权声明:hhhhh https://blog.csdn.net/WT_cnyali/article/details/78369210
文章标签: 数学 欧拉函数
想对作者说点什么? 我来说一句

C语言代码-找零钱

2018年01月04日 802B 下载

C语言基础教程 C语言入门教程

2009年05月27日 8.65MB 下载

非常有用的正则表达式

2010年01月09日 2KB 下载

04年武大复试机试题

2011年04月21日 295KB 下载

没有更多推荐了,返回首页

不良信息举报

n=∑ϕ(d) (d|n) 的证明

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭