更多资料获取
📚 个人网站:ipengtao.com
大家好,今天为大家分享一个超强的 Python 库 - optuna。
Github地址:https://github.com/optuna/optuna
超参数优化是机器学习中的重要问题,它涉及在训练模型时选择最优的超参数组合,以提高模型的性能和泛化能力。Optuna是一个用于自动化超参数优化的库,它提供了有效的参数搜索算法和方便的结果可视化工具。
安装与基本使用
可以通过pip安装Optuna库:
pip install optuna
以下是一个简单的示例,展示如何使用Optuna进行超参数优化:
import optuna
def objective(trial):
x = trial.suggest_float('x', -10, 10)
return (x - 2) ** 2 # 目标是最小化 (x - 2) ** 2
study = optuna.create_study()
study.optimize(objective, n_trials=100)
print(study.best_params)
定义优化目标函数
定义优化目标函数是Optuna中的关键步骤。这个函数的返回值将作为优化的目标。
def objective(trial):
# 定义超参数
learning_rate = trial.suggest_float('learning_rate', 1e-5, 1e-2, log=True)
num_layers = trial.suggest_int('num_layers', 1, 3)
# 使用超参数训练模型
model = train_model(learning_rate, num_layers)
# 计算模型性能指标
score = evaluate_model(model)
return score
定义搜索空间
Optuna可以定义超参数的搜索空间,包括连续型、离散型和条件型参数。
def objective(trial):
# 定义搜索空间
learning_rate = trial.sug