poj1160 Post Office(四边形不等式优化dp)

题目链接

题目描述:
建邮局,每个村庄会到最近的邮局去寄信,要求村庄到邮局的总距离最小

分析:
假设要在 [l,r] [ l , r ] 村庄中建一个邮局,要使代价最小,那么村庄一定建在第 l+r2 l + r 2 个村庄(中位数的知识)

我们预处理出 w(l,r) w ( l , r ) ,表示在 [l,r] [ l , r ] 建一座邮局的花费
于是就有递推式:
w(l,r)=w(l,r1)+dis[r]dis[l+r2] w ( l , r ) = w ( l , r − 1 ) + d i s [ r ] − d i s [ l + r 2 ]
(在递推的时候,中点最多向后移动一个,而 [l,r1] [ l , r − 1 ] 到达新中点的距离之和不变)

设计方程 f[i][j] f [ i ] [ j ] ,表示在前 i i 个村庄建立j个邮局的最小花费
于是有dp转移方程:
f[i][j]=min(f[k][j1]+w(k+1,i)) f [ i ] [ j ] = m i n ( f [ k ] [ j − 1 ] + w ( k + 1 , i ) )

感觉好像可以用斜率优化
然而这道题实际上可以用四边形不等式优化


这个式子是满足决策单调性的,四边形不等式优化可以使时间复杂度从 O(n3) O ( n 3 ) 降到 O(n2). O ( n 2 ) .

我们怎么判断式子是否有决策单调性

f(i,j)=min(f(i,k)+f(k+1,j))+w[i][j] f ( i , j ) = m i n ( f ( i , k ) + f ( k + 1 , j ) ) + w [ i ] [ j ]

给出相关的定理:

  • 对于函数 w[i][j] w [ i ] [ j ] ,若 w[i][j]+w[i+1][j+1]<=w[i][j+1]+w[i+1][j] w [ i ] [ j ] + w [ i + 1 ] [ j + 1 ] <= w [ i ] [ j + 1 ] + w [ i + 1 ] [ j ]
    w w 满足凸多边形不等式(交叠的小于等于包含
  • 对于函数w[i][j],若 w[a,b]<=w[c,d](c<=a<=b<=d w [ a , b ] <= w [ c , d ] ( c <= a <= b <= d ,那么我们称 w w 关于区间包含状态单调

定理1:w满足凸多边形不等式和区间包含状态单调,那么dp也满足四边形不等式

定理2:最优决策k[i][j]满足 k[i][j1]<=k[i][j]<=k[i+1][j] k [ i ] [ j − 1 ] <= k [ i ] [ j ] <= k [ i + 1 ] [ j ]
这是四边形不等式优化dp的关键,利用这个定理可以每次缩小 k k 的枚举范围,可以使时间复杂度从O(n3)降到 O(n2) O ( n 2 )

定理3 w w 为凸当且仅当w[i][j]+w[i+1][j+1]<=w[i+1][j]+w[i][j+1]

定理3其实告诉我们验证 w w 是否为凸的方法:
固定一个变量,看成是一个一元函数,进而判断单调性
如,我们可以固定j算出 w[i][j+1]w[i][j] w [ i ] [ j + 1 ] − w [ i ] [ j ] 关于 i i 的表达式,如果关于i是递减,则 w w 为凸

在实际的应用中我们往往不能用数学方法证明w为凸,不过我们可以通过打表找规律的方法来发现dp的决策单调性

tip

注意循环的顺序
还是我们的原则:从稳定状态转移
因为我们在转移的时候会用到 s[i1][j] s [ i − 1 ] [ j ] ,所以第一维需要从 1 1 n循环
还会用到 s[i][j+1] s [ i ] [ j + 1 ] ,所以第二维需要从 n n 1循环

#include<cstdio>
#include<iostream>
#include<cstring>

using namespace std;

const int N=305;
const int INF=1e9;
int f[30][N],w[N][N],s[30][N],dis[N],n,m;

void prepare() {
    for (int i=1;i<=n;i++) {
        w[i][i]=0;
        for (int j=i+1;j<=n;j++) {
            w[i][j]=w[i][j-1]+dis[j]-dis[(i+j)/2];
        }
    }
}

int main() {
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) 
        scanf("%d",&dis[i]);
    prepare();
    for (int i=1;i<=n;i++) f[1][i]=w[1][i],s[1][i]=0;
    for (int i=2;i<=m;i++) {
        s[i][n+1]=n;
        for (int j=n;j>i;j--) {
            f[i][j]=INF;
            for (int k=s[i-1][j];k<=s[i][j+1];k++) 
                if (f[i][j]>f[i-1][k]+w[k+1][j]) {
                    f[i][j]=f[i-1][k]+w[k+1][j];
                    s[i][j]=k;
                }
        }
    }
    printf("%d",f[m][n]);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值