Capacity论文阅读笔记4之Capacity of a mobile multiple antenna communication link in Rayleigh flat fading

附录 A 给出 T T T 维单位向量概率密度函数为
p ( ϕ ) = Γ ( T ) π T ⋅ δ ( ϕ ∗ ϕ − 1 ) p(\phi) = \frac{\Gamma (T)}{\pi ^T} \cdot \delta ( {\phi ^\ast \phi - 1} ) p(ϕ)=πTΓ(T)δ(ϕϕ1)
​系数 Γ ( T ) / π T {\Gamma (T)}/{\pi ^T} Γ(T)/πT 使 p ( ϕ ) p(\phi) p(ϕ) 的积分结果为 1.
向量 ϕ \phi ϕ ϕ ∗ ϕ = 1 {\phi ^\ast \phi= 1} ϕϕ=1 所构成的空间为 δ ( ϕ ∗ ϕ − 1 ) \delta ( {\phi ^\ast \phi - 1} ) δ(ϕϕ1),其积分结果为​
∫ δ ( ϕ ∗ ϕ − 1 ) = π T Γ ( T ) \int \delta \left( {\phi ^\ast \phi - 1} \right)= \frac{\pi ^T} {\Gamma (T)} δ(ϕϕ1)=Γ(T)πT
设向量 ϕ \phi ϕ 的元素为 x i + j y i = r i ( cos ⁡ θ i + j sin ⁡ θ i ) x_i+jy_i=r_i(\cos\theta_i+j\sin\theta_i) xi+jyi=ri(cosθi+jsinθi), i = 1 , ⋯   , T i=1,\cdots,T i=1,,T,因此 d x i d y i = r i d r i d θ i = 1 2 d r i 2 d θ i dx_idy_i=r_idr_id\theta_i=\frac{1}{2}dr_i^2d\theta_i dxidyi=ridridθi=21dri2dθi。另设

γ 1 = r 1 2 = γ c 1 2 γ 2 = r 2 2 = γ s 1 2 c 2 2 ⋯ γ T − 1 = r T − 1 2 = γ s 1 2 . . . s T − 2 2 c T − 1 2 γ T = r T 2 = γ s 1 2 . . . s T − 1 2 \begin{aligned}&\gamma_1= r_1^2=\gamma c_1^2\\ &\gamma_2= r_2^2=\gamma s_1^2c_2^2\\ & \cdots \\ & \gamma_{T-1} = r_{T-1}^2=\gamma s_1^2...s_{T-2}^2c_{T-1}^2\\ & \gamma_{T} = r_T^2=\gamma s_1^2...s_{T-1}^2\\ \end{aligned} γ1=r12=γc12γ2=r22=γs12c22γT1=rT12=γs12...sT22cT12γT=rT2=γs12...sT12
向量 ϕ \phi ϕ ϕ ∗ ϕ = r 2 = γ \phi ^\ast \phi= r^2=\gamma ϕϕ=r2=γ ,所构成空间的体积
V ( γ , T ) = ∫ ∏ i = 1 T r i d r i ∫ 0 2 π d θ i = ( 2 π ) T ∫ ∏ i = 1 T r i d r i = ( π ) T ∫ ∏ i = 1 T d γ i = π T ∫ γ T − 1 d γ ∏ i = 1 T − 1 ∫ 0 1   2 s i 2 ( T − i ) − 1 d s i = π T γ T T ! \begin{aligned}V(\gamma,T) &= \int \prod_{i=1}^{T}r_i d r_i \int_{0}^{2\pi}d\theta _i \\ &=\left ( 2\pi \right )^T \int \prod_{i=1}^{T}r_i d r_i\\&=\left ( \pi \right )^T \int \prod_{i=1}^{T} d \gamma_i\\ &=\pi^T \int \gamma^{T-1}d\gamma \prod_{i=1}^{T-1}\int_{0}^{1}\ 2s_i^{2(T-i)-1} d s_i\\ &=\frac{\pi ^T\gamma^T}{T!} \end{aligned} V(γ,T)=i=1Tridri02πdθi=(2π)Ti=1Tridri=(π)Ti=1Tdγi=πTγT1dγi=1T101 2si2(Ti)1dsi=T!πTγT
γ = 1 \gamma=1 γ=1 所构成的空间
∫ δ ( ϕ ∗ ϕ − 1 ) = ∂ ∂ γ V ( γ , T ) ∣ γ = 1 = π T Γ ( T ) \begin{aligned}\int \delta \left( {\phi ^\ast \phi - 1} \right) &=\frac{\partial }{\partial \gamma}V(\gamma,T)|_{\gamma=1}\\&=\frac{\pi ^T}{\Gamma(T)}\\ \end{aligned} δ(ϕϕ1)=γV(γ,T)γ=1=Γ(T)πT
对公式 (A.1)的理解:
γ ~ = ∑ i = L + 1 T γ i \tilde\gamma=\sum _{i=L+1}^T\gamma_i γ~=i=L+1Tγi, P ( ϕ ( L ) ∗ ϕ ( L ) < x ) = P ( 1 − x ≤ γ ~ < 1 ) P(\phi ^{(L)\ast }\phi ^{( L )} <x )=P(1-x\le\tilde\gamma<1) P(ϕ(L)ϕ(L)<x)=P(1xγ~<1)
P ( ϕ ( L ) ∗ ϕ ( L ) < x ) = ∫ 1 − x < ∑ i = L + 1 T γ i ≤ 1 p ( ϕ ∗ ϕ ) π T − L ∏ i = L + 1 T d γ i = ∫ 1 − x 1 p ( ϕ ∗ ϕ ) π T − L ( T − L ) ! d γ ~ = Γ ( T ) π L ( T − L ) ! [ 1 − ( 1 − x ) T − L ] \begin{aligned} P\left ( \phi ^{\left( L \right)\ast }\phi ^{\left( L \right)} <x \right ) &=\int_{1-x<\sum _{i=L+1}^T\gamma_i\le 1} p\left ( \phi ^\ast \phi \right )\pi^{T-L}\prod _{i=L+1}^T d\gamma_i\\ & =\int_{1-x}^1 p\left ( \phi ^\ast \phi \right ) {\pi^{T-L}\over(T-L)!}d\tilde \gamma\\ &= \frac{\Gamma(T)}{\pi^L(T-L)!}[1-(1-x)^{T-L}] \end{aligned} P(ϕ(L)ϕ(L)<x)=1x<i=L+1Tγi1p(ϕϕ)πTLi=L+1Tdγi=1x1p(ϕϕ)(TL)!πTLdγ~=πL(TL)!Γ(T)[1(1x)TL]
概率密度函数
p ( ϕ ( L ) ∗ ϕ ( L ) = x ) = ∂ ∂ x P ( ϕ ( L ) ∗ ϕ ( L ) < x ) = Γ ( T ) π L Γ ( T − L ) ( 1 − x ) T − L − 1 p(\phi ^{( L)\ast }\phi ^{( L )}=x)=\frac{\partial}{\partial x}P( \phi ^{( L)\ast }\phi ^{( L )} <x )=\frac{\Gamma(T)}{\pi^L\Gamma(T-L)}(1-x)^{T-L-1} p(ϕ(L)ϕ(L)=x)=xP(ϕ(L)ϕ(L)<x)=πLΓ(TL)Γ(T)(1x)TL1

p ( ϕ ( L ) ) = Γ ( T ) π L Γ ( T − L ) ⋅ ( 1 − ϕ ( L ) ∗ ϕ ( L ) ) T − 1 − L p\left( {\phi ^{\left( L \right)}} \right) = \frac{\Gamma (T)}{\pi ^L\Gamma (T - L)} \cdot \left( {1 - \phi ^{\left( L \right)\ast }\phi ^{\left( L \right)}} \right)^{T - 1 - L} p(ϕ(L))=πLΓ(TL)Γ(T)(1ϕ(L)ϕ(L))T1L
对公式(B.2)的理解
情况1)
E { exp ⁡ ( ∑ l = 1 T a l ⋅ ∣ ϕ l ∣ 2 ) } = Γ ( T ) π T ∫ exp ⁡ ( ∑ l = 1 T a l ⋅ γ l ) ∏ l = 1 T 1 2 d γ l d θ l = Γ ( T ) ∫ exp ⁡ ( ∑ l = 1 T a l ⋅ γ l ) ∏ l = 1 T d γ l = Γ ( T ) ∫ exp ⁡ ( ∑ l = 1 T − 1 a l ⋅ ∏ j = 1 l − 1 s j 2 ( 1 − s l 2 ) + a T ⋅ ∏ j = 1 T − 1 s j 2 ) ∏ l = 1 T − 1 s l 2 ( T − l − 1 ) d s l 2 = Γ ( T ) ∫ exp ⁡ ( a 1 + ∑ l = 1 T − 1 ( a l + 1 − a l ) ⋅ ∏ j = 1 l z j ) ∏ l = 1 T − 1 z l ( T − l − 1 ) d z l \begin{aligned} E\left\{ {\exp \left( {\sum\limits_{l = 1}^T {a_l \cdot \left| {\phi _l } \right|^2} } \right)} \right\} &=\frac{\Gamma(T)}{\pi^T}\int \exp \left(\sum_{l = 1}^T a_l \cdot \gamma_l\right ) \prod_{l=1}^T \frac{1}{2}d\gamma_l d\theta_l \\&=\Gamma(T)\int \exp \left ({\sum_{l = 1}^T a_l \cdot \gamma_l}\right ) \prod_{l=1}^T d\gamma_l \\&=\Gamma(T)\int \exp \left ( {\sum_{l = 1}^{T-1} a_l \cdot \prod _{j=1}^{l-1}s_j^2(1-s_l^2)+ a_T \cdot \prod _{j=1}^{T-1}s_j^2} \right ) \prod_{l=1}^{T-1}s_l^{2(T-l-1)} ds_l^2 \\ \\&=\Gamma(T)\int \exp\left ( {a_1+\sum_{l = 1}^{T-1} (a_{l+1}-a_l) \cdot \prod _{j=1}^{l}z_j} \right ) \prod_{l=1}^{T-1}z_l^{(T-l-1)} dz_l \\ \end{aligned} E{exp(l=1Talϕl2)}=πTΓ(T)exp(l=1Talγl)l=1T21dγldθl=Γ(T)exp(l=1Talγl)l=1Tdγl=Γ(T)exp(l=1T1alj=1l1sj2(1sl2)+aTj=1T1sj2)l=1T1sl2(Tl1)dsl2=Γ(T)exp(a1+l=1T1(al+1al)j=1lzj)l=1T1zl(Tl1)dzl

∫ exp ⁡ ( a 1 + ∑ l = 1 T − 1 ( a l + 1 − a l ) ⋅ ∏ j = 1 l z j ) ∏ l = 1 T − 1 z l ( T − l − 1 ) d z T − 1 = exp ⁡ ( a 1 + ∑ l = 1 T − 2 ( a l + 1 − a l ) ⋅ ∏ j = 1 l z j ) ( exp ⁡ ( ( a T − a T − l ) ∏ j = 1 T − 2 z j ) − 1 ) ∏ l = 1 T − 2 z l ( T − l − 2 ) a T − a T − 1 = exp ⁡ ( a 1 + ∑ l = 1 T − 3 ( a l + 1 − a l ) ⋅ ∏ j = 1 l z j + ( a T − a T − 2 ) ∏ j = 1 T − 2 z j ) − exp ⁡ ( a 1 + ∑ l = 1 T − 2 ( a l + 1 − a l ) ⋅ ∏ j = 1 l z j ) a T − a T − 1 ∏ l = 1 T − 2 z l ( T − l − 2 ) \begin{aligned} & \int \exp\left ( {a_1+\sum_{l = 1}^{T-1} (a_{l+1}-a_l) \cdot \prod _{j=1}^{l}z_j} \right ) \prod_{l=1}^{T-1}z_l^{(T-l-1)} dz_{T-1}\\ &=\frac{\exp\left ( {a_1+\sum_{l = 1}^{T-2} (a_{l+1}-a_l) \cdot \prod _{j=1}^{l}z_j} \right ) \left (\exp\left( (a_T-a_{T-l}) \prod _{j=1}^{T-2}z_j\right )-1 \right ) \prod_{l=1}^{T-2}z_l^{(T-l-2)}}{a_T-a_{T-1}} \\&=\frac{\exp\left ( {a_1+\sum_{l = 1}^{T-3} (a_{l+1}-a_l) \cdot \prod _{j=1}^{l}z_j} + (a_T-a_{T-2}) \prod _{j=1}^{T-2}z_j\right )-\exp\left ( {a_1+\sum_{l = 1}^{T-2} (a_{l+1}-a_l) \cdot \prod _{j=1}^{l}z_j} \right ) }{a_T-a_{T-1}} \prod_{l=1}^{T-2}z_l^{(T-l-2)}\\ \end{aligned} exp(a1+l=1T1(al+1al)j=1lzj)l=1T1zl(Tl1)dzT1=aTaT1exp(a1+l=1T2(al+1al)j=1lzj)(exp((aTaTl)j=1T2zj)1)l=1T2zl(Tl2)=aTaT1exp(a1+l=1T3(al+1al)j=1lzj+(aTaT2)j=1T2zj)exp(a1+l=1T2(al+1al)j=1lzj)l=1T2zl(Tl2)

第一部分连续积分得到
e a T − e a 1 ∏ i ≠ T ( a T − a i ) + others \frac{e^{a_T}-e^{a_1} }{\prod _{i\neq T} (a_T-a_i)}+\textrm{others} i=T(aTai)eaTea1+others
第二部分连续积分得到
e a T − 1 − e a 1 ∏ i ≠ T − 1 ( a T − 1 − a i ) + others \frac{e^{a_{T-1}}-e^{a_1} }{\prod _{i\neq T-1} (a_{T-1}-a_i)}+\textrm{others} i=T1(aT1ai)eaT1ea1+others
在计算过程中
1 ( a T − a T − 1 ) ( a T − a T − 2 ) + 1 ( a T − 1 − a T ) ( a T − 1 − a T − 2 ) = 1 ( a T − 2 − a T ) ( a T − 2 − a T − 1 ) \frac{1 }{ (a_T-a_{T-1}) (a_T-a_{T-2})}+\frac{1 }{ (a_{T-1}-a_T) (a_{T-1}-a_{T-2})}=\frac{1 }{ (a_{T-2}-a_T) (a_{T-2}-a_{T-1})} (aTaT1)(aTaT2)1+(aT1aT)(aT1aT2)1=(aT2aT)(aT2aT1)1
用归纳法可证明
∑ k = T − m + 1 T 1 ∏ i ≠ k , i = T − m + 1 T ( a k − a i ) = 1 ∏ i ≠ k , i = T − m + 1 T ( a T − m − a i ) \sum_{k=T-m+1}^T\frac{1 }{\prod _{i\neq k,i=T-m+1}^T (a_k-a_i)}=\frac{1 }{\prod _{i\neq k,i=T-m+1}^T (a_{T-m}-a_i)} k=Tm+1Ti=k,i=Tm+1T(akai)1=i=k,i=Tm+1T(aTmai)1
​结合以上结果得到 1)
将1)的结果应用到2),结合密度函数得到 2)。
3)expand A.1
E { exp ⁡ ( ∑ l = 1 L a ⋅ ∣ ϕ l ∣ 2 ) } = ∫ 0 1 e a x p ( x ) d x = ∫ 0 1 e a x Γ ( T ) Γ ( T − L ) Γ ( L ) ( 1 − x ) T − L − 1 x L − 1 d x = Γ ( T ) Γ ( T − L ) Γ ( L ) ∫ 0 1 e a ( 1 − y ) y T − L − 1 ( 1 − y ) L d y = Γ ( T ) Γ ( T − L ) Γ ( L ) ∫ 0 1 e a e − a y y T − L − 1 ∑ i = 0 L ( L i ) ( − y ) L − i d y = Γ ( T ) e a Γ ( T − L ) Γ ( L ) ∑ i = 0 L ( − 1 ) L − i γ ( T − i , a ) a T − i \begin{aligned} E\left\{ {\exp \left( {\sum\limits_{l = 1}^L {a \cdot \left| {\phi _l } \right|^2} } \right)} \right\}& = \int_0^1 {e^{ax}p(x)dx} \\ &= \int_0^1 {e^{ax}\frac{\Gamma (T)}{\Gamma (T - L)\Gamma (L)}(1 - x)^{T - L - 1}x^{L - 1}dx} \\ &= \frac{\Gamma (T)}{\Gamma (T - L)\Gamma (L)}\int_0^1 {e^{a(1-y)}y^{T - L - 1}(1-y)^L dy} \\ &= \frac{\Gamma (T)}{\Gamma (T - L)\Gamma (L)}\int_0^1 {e^a e^{-ay}y^{T - L - 1}\sum _{i=0}^L\binom{L}{i}(-y)^{L-i} dy} \\&= \frac{\Gamma (T)e^a}{\Gamma (T - L)\Gamma (L)}\sum _{i=0}^L \frac{(-1)^{L-i}\gamma(T-i,a)}{a^{T-i}} \\ \end{aligned} E{exp(l=1Laϕl2)}=01eaxp(x)dx=01eaxΓ(TL)Γ(L)Γ(T)(1x)TL1xL1dx=Γ(TL)Γ(L)Γ(T)01ea(1y)yTL1(1y)Ldy=Γ(TL)Γ(L)Γ(T)01eaeayyTL1i=0L(iL)(y)Lidy=Γ(TL)Γ(L)Γ(T)eai=0LaTi(1)Liγ(Ti,a)
这里 x = ∣ ϕ L ∗ ϕ L ∣ = ∑ l = 1 L a ⋅ ∣ ϕ l ∣ 2 x = \left| {\phi ^{L\ast }\phi ^L} \right| = \sum\limits_{l = 1}^L {a \cdot \left| {\phi _l } \right|^2} x=ϕLϕL=l=1Laϕl2 d ϕ 1 d ϕ 2 ⋯ d ϕ L = π L Γ ( L ) x L − 1 d x d\phi _1 d\phi _2 \cdots d\phi _L = \frac{\pi ^L}{\Gamma (L)}x^{L - 1}dx dϕ1dϕ2dϕL=Γ(L)πLxL1dx
Ref.
T. L. Marzetta and B. M. Hochwald, ``Capacity of a mobile multiple antenna communication link in Rayleigh flat fading,’’ IEEE Trans. Inf.Theory, vol. 45, no. 1, pp. 139–157, Jan. 1999

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值