标准拉盖尔多项式
拉盖尔多项式可以表示为:
拉盖尔多项式的正交性是指
当 时 上式的积分运算结果为0。这是一种加权的正交性。
证明:
(1) 采用变换
容易得到,当
上式的结果为0是因为在进行微分运算后,各项均包含 , 各项的上下限均为0。
(2)采用分部积分
根据(1), 当,上式的积分结果为0。
(3)考虑到
当 ,上式每一项幂次都小于 n,根据(2),
当
这样就证明了拉盖尔多项式的正交性。
通过归一化,构成正交基:
广义拉盖尔多项式
广义拉盖尔多项式可以表示为:
广义拉盖尔多项式的正交性是指
当 时 上式的积分运算结果为0。这是一种加权的正交性。
证明:
(1) 采用变换
容易得到,当
上式的结果为0是因为在进行微分运算后,各项均包含 , 各项的上下限均为0。
(2)采用分部积分
根据(1), 当,上式的积分结果为0。
(3)考虑到
当 ,上式每一项幂次都小于 n,根据(2),
当
由此得广义拉盖尔多项式的正交性。
通过归一化,构成正交基:
正交拉盖尔多项式应用
在论文 Capacity of Multiantenna Gaussian Channels 中,作者 I Emre Telatar 为推导随机矩阵特征值的概率密度函数和MIMO容量,在公式(8)引入了广义拉盖尔多项式。
在功率约束 P 下,t 发送天线和 r 接收天线的信道容量为:
这里
.