拉盖尔多项式的正交性

本文介绍了拉盖尔多项式的正交性及其证明过程,重点展示了标准拉盖尔多项式和广义拉盖尔多项式的表达形式,并阐述了它们在MIMO容量分析中的应用。通过变换和分部积分法证明了它们的加权正交性,同时提供了归一化后的正交基。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

标准拉盖尔多项式

拉盖尔多项式可以表示为:

\large L_n(x)=e^x\large \frac{d^n}{dx^n}(x^ne^{-x})

拉盖尔多项式的正交性是指

\large \int_0^{\infty}e^{-x} L_n(x)L_m(x)dx = \delta_{nm}(n!m!)

当  m\neq n, (m,n=0,1,2,\cdots) 时 上式的积分运算结果为0。这是一种加权的正交性。

证明:

(1) 采用变换

\large \frac{d^n}{dx^n}(x^ne^{-x})dx= \frac{d^{n-1}}{dx^{n-1}}(x^ne^{-x})

容易得到,当n\ge 1

\large \begin{align*} \int_0^{\infty}e^{-x} L_n(x)dx &= \int_0^{\infty}\frac{d^n}{dx^n}(x^ne^{-x})dx \\&= \int_0^{\infty}\frac{d^{n-1}}{dx^{n-1}}(x^ne^{-x})\\ &= \frac{d^{n-1}}{dx^{n-1}}(x^ne^{-x})|_0^{\infty}=0\end{align}

上式的结果为0是因为在进行微分运算后,各项均包含 \large e^{-x}x^k, (k\ge 1), 各项的上下限均为0。

(2)采用分部积分

\large \begin{align*} \int_0^{\infty}e^{-x} x^mL_n(x)dx &= \int_0^{\infty}x^m\frac{d^n}{dx^n}(x^ne^{-x})dx \\&= \int_0^{\infty}x^m\frac{d^{n-1}}{dx^{n-1}}(x^ne^{-x})\\ &=0-m\int x^{m-1}\frac{d^{n-1}}{dx^{n-1}}(x^ne^{-x})dx\\&=(-1)^mm!\int \frac{d^{n-m}}{dx^{n-m}}(x^ne^{-x})dx\end{align*}

根据(1), 当m < n,上式的积分结果为0。

(3)考虑到

L_m(x) =\sum _{k=0}^m\binom{m}{k}(-1)^k x^{m-k}

m < n ,上式每一项幂次都小于 n,根据(2),

\int_0^{\infty}e^{-x} L_m(x)L_n(x)dx ={(-1)^k}\sum _{k=0}^m \binom{m}{k}\int_0^{\infty}x^k\frac{d^n}{dx^n}(x^ne^{-x})dx = 0

当 m=n

 \large \begin{align*} \int_0^{\infty}e^{-x} L_n(x)L_n(x)dx &={(-1)^n} \int_0^{\infty}x^n\frac{d^n}{dx^n}(x^ne^{-x})dx\\& = {(-1)^{2n}}n!\int_0^{\infty} x^ne^{-x}dx \\&=(n!)^2 \end{align*}

这样就证明了拉盖尔多项式的正交性。\large \star

通过归一化,构成正交基:

\large \frac{L_n(x)}{n!}=\frac{e^x}{n!}\large \frac{d^n}{dx^n}(x^ne^{-x}), n=0,1,\cdots

 广义拉盖尔多项式

广义拉盖尔多项式可以表示为:

\large \large L_n^a(x)=\frac{1}{n!}e^xx^{-a}\large \frac{d^n}{dx^n}(x^{a+n}e^{-x})

广义拉盖尔多项式的正交性是指

\large \int_0^{\infty}e^{-x} x^aL_n^a(x)L_m^a(x)dx = \delta_{nm}\cdot\frac{(a+n)!)}{n!}

当  m\neq n, (m,n=0,1,2,\cdots) 时 上式的积分运算结果为0。这是一种加权的正交性。

证明:

(1) 采用变换

\large \frac{d^n}{dx^n}(x^ne^{-x})dx= \frac{d^{n-1}}{dx^{n-1}}(x^ne^{-x})

容易得到,当n\ge 1

\large \begin{align*} n!\cdot\int_0^{\infty}e^{-x} x^{a}L_n^a(x)dx &= \int_0^{\infty}\frac{d^n}{dx^n}(x^{a+n}e^{-x})dx \\&= \int_0^{\infty}\frac{d^{n-1}}{dx^{n-1}}(x^{a+n}e^{-x})\\ &= \frac{d^{n-1}}{dx^{n-1}}(x^{a+n}e^{-x})|_0^{\infty}=0\end{align}

上式的结果为0是因为在进行微分运算后,各项均包含 \large e^{-x}x^k, (k\ge 1), 各项的上下限均为0。

(2)采用分部积分

\large \begin{align*} n!\cdot\int_0^{\infty}e^{-x} x^ax^mL_n^a(x)dx &= \int_0^{\infty}x^m\frac{d^n}{dx^n}(x^{a+n}e^{-x})dx \\&= \int_0^{\infty}x^m\frac{d^{n-1}}{dx^{n-1}}(x^{a+n}e^{-x})\\ &=0-m\int x^{m-1}\frac{d^{n-1}}{dx^{n-1}}(x^{a+n}e^{-x})dx\\&=(-1)^mm!\int \frac{d^{n-m}}{dx^{n-m}}(x^{a+n}e^{-x})dx\end{align*}

根据(1), 当m < n,上式的积分结果为0。

(3)考虑到

\large m!\cdot L_m^a(x) =x^{-a}\sum _{k=0}^m\binom{m}{k}(-1)^k x^{a+m-k} =\sum _{k=0}^m\binom{m}{k}(-1)^k x^{m-k}

m < n ,上式每一项幂次都小于 n,根据(2),

\int_0^{\infty}e^{-x} x^aL_m^a(x)L_n^a(x)dx =\frac{(-1)^k}{m!n!}\sum _{k=0}^m \binom{m}{k}\int_0^{\infty}x^k\frac{d^n}{dx^n}(x^{a+n}e^{-x})dx = 0

当 m=n

\large \begin{align*} \int_0^{\infty}e^{-x}x^a L_n^a(x)L_n^a(x)dx &=\frac{(-1)^n}{n!n!} \int_0^{\infty}x^{n}\frac{d^n}{dx^n}(x^{a+n}e^{-x})dx\\& = \frac{(-1)^{2n}}{n!}\int_0^{\infty} x^{a+n}e^{-x}dx \\&=\frac{(a+n)!}{n!} \end{align*}

 由此得广义拉盖尔多项式的正交性。\large \diamond\large \star

通过归一化,构成正交基:

\large \varphi_n^a=\left [ \frac{n!}{(a+n)!} \right ]^{1/2}\large L_n^a(x), n=0,1,\cdots

正交拉盖尔多项式应用

在论文 Capacity of Multiantenna Gaussian Channels 中,作者 I Emre Telatar 为推导随机矩阵特征值的概率密度函数和MIMO容量,在公式(8)引入了广义拉盖尔多项式。

在功率约束 P 下,t 发送天线和 r 接收天线的信道容量为:

\large C=\int_0^\infty \log(1+P\lambda /t) \sum_{k=0}^{m-1}\frac{k!}{(k+n-m)!}[L_k^{n-m}]^2 \lambda^{n-m}e^{-\lambda }d\lambda

这里

\large m=\min(r,t), n=\max(r,t).

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值