对矩阵det和logdet求导

这篇博客探讨了矩阵导数的概念,特别是对于行列式的导数。内容包括矩阵的转置和伴随矩阵,以及当矩阵可逆时,利用矩阵的导数计算对数行列式的导数。文章通过一个例子说明了如何在信息科学和技术领域,如通信和信号处理中,计算矩阵B+rC的对数行列式的导数,这对于理解MIMO信道容量的变化率至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Derivative of det

Assume matrix  A=[a_{ij}], i=1,2,...,n, j=1,2,...,n

\frac {d\det(A)}{d\alpha }=\sum_{i,j=1}^{n}\frac{d \det(A)}{a_{ij}}\frac{d a_{ij}}{d\alpha}

\det(A)=\sum_{j=1}^{n}a_{ij}\textrm {adj}(A_{ij})

for any i,where \textrm {adj}(A_{ij}) denotes the adjugate of A for a_{ij} . So

\begin {align*} \label{ref1}\frac{d \det(A)}{a_{ik}}& = \textrm {adj}(A_{ik}) + \sum_{j\neq k}\frac {\operatorname {d} \textrm {adj}(A_{ij})}{d a_{ik}} \\ &= \textrm {adj}(A_{ik}) \end{align*}

the second part of rhs of the first equation is 0, for  \textrm {adj}(A_{ij}) do not include a_{ik}


\begin {align} \displaystyle {\frac {d\det(A)}{d\alpha }}&=\sum_{i,j=1}^{n}\textrm {adj}(A_{ij})\frac{d a_{ij}}{d\alpha} \nonumber\\ &=\operatorname {tr} \left(\operatorname {adj} (A){\frac {dA^T}{d\alpha }}\right) \nonumber\end{align}

where adj(A) denotes the adjugate of A,and ()^Tdenotes transpose. If A is invertible, considering \operatorname {adj} (A)= \det(A)\operatorname A^{-1}, so

{\displaystyle {\frac {d\det(A)}{d\alpha }}=\det(A)\operatorname {tr} \left(A^{-1}{\frac {dA^T}{d\alpha }}\right).}

Derivative of logdet

Using

\operatorname {d}\left ( \det(\Sigma) \right )=\mathrm {tr}\left ( \Sigma^{-1}\operatorname {d}\Sigma \right )\det(\Sigma)

It is easy to obtain

\begin {align} \label{ref2} \operatorname {d}\left (\log \det(\Sigma) \right )&=\frac{\operatorname {d}\left (\log \det(\Sigma) \right )} {d\det(\Sigma)}\cdot {d\det(\Sigma)} \nonumber\\ &=\frac{1} {\det(\Sigma)}\cdot {d\det(\Sigma)}\nonumber \\ &=\mathrm {tr}\left ( \Sigma^{-1}d\Sigma\right ) \nonumber\end{align}

Example

We often meet the problem to derivate a logdet of a matrix like B+rC in information science and technology, such as communications and signal processing, because the capacity of a MIMO channel is logdet(X), if the channel is the form of B+rC, the capacity is logdet(B+rC). To investigat the change rate of capacity corresponding to r, it necessary to calculate the derivation.

Using the above result, we obtain

\begin {align} \frac{d}{d \lambda} \left (\log \det (B+\lambda C) \right ) =\mathrm {tr}\left ( \left ( B+\lambda C \right )^{-1}C \right ) \nonumber\end{align}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值