非中心卡方分布

非中心卡方分布

非中心卡方分布是卡方分布的一般化形式。如果  X_i,\hspace{0.5em} i=1,\cdots,k  是 k 个独立的正态分布的随机变量均值为 \mu_i 方差为 \sigma_i^2,表示为 N(\mu_i, \sigma_i^2),那么随机变量

X=\sum _{i=1}^k\left ( \frac{X_i}{\sigma_i }\right )^2

为非中心卡方分布.

非中心卡方分布涉及两个参数: k 表示自由度,即 X_i 的数目,\lambda 是和随机变量 X_i 相关的参数:

\lambda =\sum _{i=1}^k\left ( \frac{\mu_i }{\sigma_i }\right )^2

由以上参数所定义的非中心卡方分布的概率密度函数 (PDF)为:

f(x;k,\lambda)=\sum_{i=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^i}{i!}f(x;k+2i)

其中,f(x;\nu) 表示自由度为 \nu 的中心卡方分布的概率密度函数。

f(x,\nu) = \frac{e^{-x/2}x^{\nu/2 - 1}} {2^{\nu/2}\Gamma({\nu/2}) }, \hspace {1em} x \ge 0

式中

\Gamma(a) = \int_{0}^{\infty} {t^{a-1}e^{-t}dt}=(a-1)\Gamma(a-1)

\Gamma (1)=1, \hspace{1em} \Gamma (1/2)=\sqrt \pi

可见非中心卡方分布的概率密度函数可以表示为 自由度为 k+2i,(i=0,1,\cdots) 的中心卡方分布的概率密度函数的加权和。

非中心卡方分布的概率密度函数还可以进一步表示为:

f(x;k,\lambda)=\frac{1}{2}e^{-(x+\lambda)/2}\left ( \frac{x}{\lambda } \right )^{k/4-1/2}I_{k/2-1}\left ( \sqrt{\lambda x} \right )

其中,

I_{\nu}(y)=\left (\frac{y}{2} \right )^\nu \sum _{j=0}^{\infty}\frac{\left ( \frac{y}{2} \right )^{2j}}{j!\Gamma (\nu+j+1)}

是第一类 \nu 阶变换的贝塞尔函数。

根据贝塞尔函数和超几何函数之间的关系,非中心卡方分布的概率密度函数还可以表示为

f(x;k,\lambda)=\frac{e^{-x/2}{x}^{k/2-1}}{2^{k/2}\Gamma (k/2)} \cdot e^{-\lambda/2} { }_0F_1( ;\frac{k}{2};\frac{\lambda x}{4})=f(x;k) \cdot e^{-\lambda/2} { }_0F_1( ;\frac{k}{2};\frac{\lambda x}{4}),

非中心卡方分布的概率密度函数等于相同自由度的中心卡方分布的概率密度函数乘以一个均值相关的函数和一个超几何函数。

超几何函数

{ }_0F_1( ;\gamma;z)=\sum _{n=0}^\infty \frac{z^n}{\left ( \gamma \right )_n n!}=\sum _{n=0}^\infty \frac{\Gamma (\gamma )z^n} {\Gamma\left ( \gamma +n \right ) n!}
 更一般的超几何函数

F ( \alpha , \beta ; \gamma ; z) =\ {}_{2} F _ {1} ( \alpha , \beta ; \gamma ; z) = \ F ( \beta , \alpha ; \gamma ; z) \\ \\=\sum _ {n = 0 } ^ \infty \frac{( \alpha ) _ {n} ( \beta ) _ {n} }{( \gamma ) _ {n} } \frac{z ^ {n} }{n!\ } =\frac{\Gamma ( \gamma ) }{\Gamma ( \alpha ) \Gamma ( \beta ) } \sum _ {n = 0 } ^ \infty \frac{\Gamma ( \alpha + n) \Gamma ( \beta + n) }{\Gamma ( \gamma + n) } \frac{z ^ {n} }{n!},

是以下微分方程的解

z ( 1 - z) w ^ {\prime\prime} + [ \gamma - ( \alpha + \beta + 1) z] w ^ \prime - \alpha \beta w = 0.

 非中心卡方分布的概率密度函数推导

(1) 假设随机变量  X_i,\hspace{0.5em} i=1,\cdots,k  是 k 个相互独立的正态分布随机变量。假定随机变量具有相同的方差, \sigma _1=\sigma _2=\cdots=\sigma _k=1 ,这样的随机变量 X_i,\hspace{0.5em} i=1,\cdots,k 称为球形对称。那么随机变量

X=\sum _{i=1}^k X_i^2

为非中心卡方分布。

(2)该分布由参数

\lambda =\sum _{i=1}^k \mu_i ^2

决定。

由于球形对称,可以假设 \mu _1=\sqrt \lambda , \hspace{1em}\mu_2=\cdots=\mu_k=0.

(3)先计算 X=X_1^2 的概率密度函数

X_1 概率密度函数为 \phi (x-\sqrt \lambda ), 这里 \phi (x) 表示标准高斯概率密度函数

\phi (x) =\frac{1}{\sqrt {2\pi}} e^{-x^2/2}

通过变量代换可以得到 X=X_1^2 的概率密度函数为

f(x;1,\lambda) =\frac{1}{2\sqrt {2\pi x}}\left ( \phi (\sqrt{x}-\sqrt{\lambda })+ \phi (\sqrt{x}+\sqrt{\lambda }) \right ) \vspace{0.5em} \\=\frac{1}{\sqrt {2\pi x}}e^{-(x+\lambda )/2}\frac{e^{\sqrt{\lambda x}}+e^{-\sqrt{\lambda x}}}{2} \\ =\frac{e^{-(x+\lambda )/2}}{\sqrt {2\pi x}}\sum_{n=0}^\infty \frac{\lambda^n x^n}{(2n)!}, \qquad\qquad \sqrt{\pi}(2n)!=2^nn!\cdot 2^n\Gamma(n+1/2) \\ =\sum_{n=0}^\infty \frac{e^{-\lambda /2}(\lambda/2)^n }{n!}\frac{e^{-x/2}x^{n-1/2}}{2^{n+1/2}\Gamma (n+1/2)} \\=\sum_{n=0}^\infty \frac{e^{-\lambda /2}(\lambda/2)^n }{n!}f(x;1+2n)

(注:这里第一个等号右边的第一项对应高斯分布的正半轴,第二项对应高斯分布的负半轴。)

(4)最后考虑变量 X_i,\hspace{0.5em} i=2,\cdots,k,得到 k 自由度非中心卡方分布的概率密度函数:

f(x;k,\lambda)=\sum_{i=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^i}{i!}f(x;k+2i)

推导结束。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值