拉盖尔多项式(Laguerre Polynomial)

拉盖尔多项式为拉盖尔方程的标准解。下列为拉盖尔方程:

xy''+(1-x)y'+ny=0

此方程只有当n为非负时才有非平凡解。

当 n 为整数时,方程的解表示为以下的多项式:

\large L_n(x)=e^x\large \frac{d^n}{dx^n}(x^ne^{-x})

它的生成方程为

\large \begin{align*} g(x,z)&={\mathop{\rm exp}\nolimits \left({-{xz\over 1-z}}\right)\over 1-z}\nonumber\\ &= 1+(-x+1)z+({\textstyle{1\over 2}}x^2-2x+1)z^2+(-{\textstyle{1\over 6}}x^3+{\textstyle{3\over 2}}x^2-3x+1)z^3+\ldots. \end{align*}

拉盖尔多项式满足以下的递推关系:

\large \large \begin{equation} (n+1)L_{n+1}(x)=(2n+1-x)L_n(x)-nL_{n-1}(x) \end{equation}

\large \begin{equation} xL_n'(x)=nL_n(x)-nL_{n-1}(x). \end{equation}

前面的几个拉盖尔多项式:

\large \begin{align*} L_0(x) &= 1\\ L_1(x) &= -x+1\\ L_2(x) &= {\textstyle{1\over 2}}(x^2-4x+2)\\ L_3(x) &= {\textstyle{1\over 6}}(-x^3+9x^2-18x+6). \end{align*}

正则的拉盖尔多项式表示为:

\large \begin{equation} L_n(x)=L_n^0(x). \end{equation}

一般的拉盖尔多项式表示为:

\large \begin{equation} L_n^k(x) &=& {e^xx^{-k}\over n!}{d^n\over dx^n}(e^{-x}x^{n+k})\nonumber\\ &=& (-1)^n {d^n\over dx^n}[L_{n+k}(x)]\\ &=& \sum_{m=0}^\infty (-1)^m {(n+k)!\over (n-m)!(k+m)!m!}x^m \end{equation}

它的生成函数

\large \begin{equation} g(x,z)={\mathop{\rm exp}\nolimits \left({-{xz\over 1-z}}\right)\over (1-z)^{k+1}}= 1+(k+1-x)z+{\textstyle{1\over 2}}[x^2-2(k+2)x+(k+1)(k+2)]z^2+\ldots. \end{equation}

拉盖尔多项式在区间[0,\infty)关于权函数x^ke^{-x}正交:

\large \begin{equation} \int_0^\infty e^{-x}x^k L_n^k(x)L_m^k(x)\,dx = {(n+k)!\over n!}\delta_{mn}, \end{equation}

另外,

\large \begin{equation} \int_0^\infty e^{-x}x^{k+1}[L_n^k(x)]^2\,dx = {(n+k)!\over n!}(2n+k+1). \end{equation}
递推关系:

\large \begin{equation} \sum_{\nu=0}^n L_\nu^{(\alpha)}(x)=L_n^{(\alpha+1)}(x) \end{equation}

\large \begin{equation} L_n^{(\alpha)}(x)=L_n^{(\alpha+1)}(x)-L_{n-1}^{(\alpha+1)}(x). \end{equation}
对拉盖尔多项式求导:

\large \large \begin{align*} {d\over dx}L_n^{(\alpha)}(x)&=-L_{n-1}^{(\alpha+1)}(x)\nonumber\\ &=x^{-1}[nL_n^{(\alpha)}(x)-(n+\alpha)L_{n-1}^{(\alpha)}(x). \end{align}

前面的几个拉盖尔多项式:

\large \begin{align*} L_0^k(x) &= 1\\ L_1^k(x) &= -x+k+1\\ L_2^k(x) &= {\textstyle{1\over 2}}[x^2-2(k+2)x+(k+1)(k+2)]\\ L_3^k(x) &= {\textstyle{1\over 6}}[-x^3+3(k+3)x^2-3(k+2)(k+3)x+(k+1)(k+2)(k+3)]. \end{align}

参考:Laguerre Polynomial

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值